Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885478230> ?p ?o ?g. }
- W2885478230 endingPage "1903" @default.
- W2885478230 startingPage "1895" @default.
- W2885478230 abstract "The nonalcoholic fatty liver disease is the most common liver abnormality. Up to date, liver biopsy is the reference standard for direct liver steatosis quantification in hepatic tissue samples. In this paper we propose a neural network-based approach for nonalcoholic fatty liver disease assessment in ultrasound.We used the Inception-ResNet-v2 deep convolutional neural network pre-trained on the ImageNet dataset to extract high-level features in liver B-mode ultrasound image sequences. The steatosis level of each liver was graded by wedge biopsy. The proposed approach was compared with the hepatorenal index technique and the gray-level co-occurrence matrix algorithm. After the feature extraction, we applied the support vector machine algorithm to classify images containing fatty liver. Based on liver biopsy, the fatty liver was defined to have more than 5% of hepatocytes with steatosis. Next, we used the features and the Lasso regression method to assess the steatosis level.The area under the receiver operating characteristics curve obtained using the proposed approach was equal to 0.977, being higher than the one obtained with the hepatorenal index method, 0.959, and much higher than in the case of the gray-level co-occurrence matrix algorithm, 0.893. For regression the Spearman correlation coefficients between the steatosis level and the proposed approach, the hepatorenal index and the gray-level co-occurrence matrix algorithm were equal to 0.78, 0.80 and 0.39, respectively.The proposed approach may help the sonographers automatically diagnose the amount of fat in the liver. The presented approach is efficient and in comparison with other methods does not require the sonographers to select the region of interest." @default.
- W2885478230 created "2018-08-22" @default.
- W2885478230 creator A5002749214 @default.
- W2885478230 creator A5019798413 @default.
- W2885478230 creator A5039741682 @default.
- W2885478230 creator A5050544147 @default.
- W2885478230 creator A5058594570 @default.
- W2885478230 creator A5064983536 @default.
- W2885478230 creator A5067556452 @default.
- W2885478230 creator A5071960288 @default.
- W2885478230 creator A5074164086 @default.
- W2885478230 creator A5084262755 @default.
- W2885478230 date "2018-08-09" @default.
- W2885478230 modified "2023-10-12" @default.
- W2885478230 title "Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images" @default.
- W2885478230 cites W1932198206 @default.
- W2885478230 cites W1977345026 @default.
- W2885478230 cites W1981244178 @default.
- W2885478230 cites W2003971999 @default.
- W2885478230 cites W2006617902 @default.
- W2885478230 cites W2025204335 @default.
- W2885478230 cites W2034087479 @default.
- W2885478230 cites W2044465660 @default.
- W2885478230 cites W2058642884 @default.
- W2885478230 cites W2067740038 @default.
- W2885478230 cites W2073953764 @default.
- W2885478230 cites W2104067472 @default.
- W2885478230 cites W2108598243 @default.
- W2885478230 cites W2123612027 @default.
- W2885478230 cites W2127227873 @default.
- W2885478230 cites W2130672074 @default.
- W2885478230 cites W2139503676 @default.
- W2885478230 cites W2143834603 @default.
- W2885478230 cites W2148476623 @default.
- W2885478230 cites W2153635508 @default.
- W2885478230 cites W2155664277 @default.
- W2885478230 cites W2158698691 @default.
- W2885478230 cites W2160192674 @default.
- W2885478230 cites W2189773274 @default.
- W2885478230 cites W2253429366 @default.
- W2885478230 cites W2280059135 @default.
- W2885478230 cites W2328176404 @default.
- W2885478230 cites W2341106171 @default.
- W2885478230 cites W2341537277 @default.
- W2885478230 cites W2346062110 @default.
- W2885478230 cites W2395579298 @default.
- W2885478230 cites W2500098445 @default.
- W2885478230 cites W2510224130 @default.
- W2885478230 cites W2521714275 @default.
- W2885478230 cites W2592929672 @default.
- W2885478230 cites W2593631018 @default.
- W2885478230 cites W2593832540 @default.
- W2885478230 cites W2595016203 @default.
- W2885478230 cites W2740989114 @default.
- W2885478230 cites W2746549636 @default.
- W2885478230 cites W2767046341 @default.
- W2885478230 cites W2807768065 @default.
- W2885478230 cites W2964350391 @default.
- W2885478230 doi "https://doi.org/10.1007/s11548-018-1843-2" @default.
- W2885478230 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6223753" @default.
- W2885478230 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30094778" @default.
- W2885478230 hasPublicationYear "2018" @default.
- W2885478230 type Work @default.
- W2885478230 sameAs 2885478230 @default.
- W2885478230 citedByCount "159" @default.
- W2885478230 countsByYear W28854782302019 @default.
- W2885478230 countsByYear W28854782302020 @default.
- W2885478230 countsByYear W28854782302021 @default.
- W2885478230 countsByYear W28854782302022 @default.
- W2885478230 countsByYear W28854782302023 @default.
- W2885478230 crossrefType "journal-article" @default.
- W2885478230 hasAuthorship W2885478230A5002749214 @default.
- W2885478230 hasAuthorship W2885478230A5019798413 @default.
- W2885478230 hasAuthorship W2885478230A5039741682 @default.
- W2885478230 hasAuthorship W2885478230A5050544147 @default.
- W2885478230 hasAuthorship W2885478230A5058594570 @default.
- W2885478230 hasAuthorship W2885478230A5064983536 @default.
- W2885478230 hasAuthorship W2885478230A5067556452 @default.
- W2885478230 hasAuthorship W2885478230A5071960288 @default.
- W2885478230 hasAuthorship W2885478230A5074164086 @default.
- W2885478230 hasAuthorship W2885478230A5084262755 @default.
- W2885478230 hasBestOaLocation W28854782301 @default.
- W2885478230 hasConcept C126322002 @default.
- W2885478230 hasConcept C126838900 @default.
- W2885478230 hasConcept C143753070 @default.
- W2885478230 hasConcept C153180895 @default.
- W2885478230 hasConcept C154945302 @default.
- W2885478230 hasConcept C2775934546 @default.
- W2885478230 hasConcept C2776175330 @default.
- W2885478230 hasConcept C2776954865 @default.
- W2885478230 hasConcept C2777766500 @default.
- W2885478230 hasConcept C2778772119 @default.
- W2885478230 hasConcept C2779134260 @default.
- W2885478230 hasConcept C41008148 @default.
- W2885478230 hasConcept C71924100 @default.
- W2885478230 hasConcept C81363708 @default.
- W2885478230 hasConceptScore W2885478230C126322002 @default.
- W2885478230 hasConceptScore W2885478230C126838900 @default.