Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885487308> ?p ?o ?g. }
- W2885487308 abstract "Abstract The dimensionality of a network’s collective activity is of increasing interest in neuroscience. This is because dimensionality provides a compact measure of how coordinated network-wide activity is, in terms of the number of modes (or degrees of freedom) that it can independently explore. A low number of modes suggests a compressed low dimensional neural code and reveals interpretable dynamics [1], while findings of high dimension may suggest flexible computations [2, 3]. Here, we address the fundamental question of how dimensionality is related to connectivity, in both autonomous and stimulus-driven networks. Working with a simple spiking network model, we derive three main findings. First, the dimensionality of global activity patterns can be strongly, and systematically, regulated by local connectivity structures. Second, the dimensionality is a better indicator than average correlations in determining how constrained neural activity is. Third, stimulus evoked neural activity interacts systematically with neural connectivity patterns, leading to network responses of either greater or lesser dimensionality than the stimulus. Author summary New recording technologies are producing an amazing explosion of data on neural activity. These data reveal the simultaneous activity of hundreds or even thousands of neurons. In principle, the activity of these neurons could explore a vast space of possible patterns. This is what is meant by high-dimensional activity: the number of degrees of freedom (or “modes”) of multineuron activity is large, perhaps as large as the number of neurons themselves. In practice, estimates of dimensionality differ strongly from case to case, and do so in interesting ways across experiments, species, and brain areas. The outcome is important for much more than just accurately describing neural activity: findings of low dimension have been proposed to allow data compression, denoising, and easily readable neural codes, while findings of high dimension have been proposed as signatures of powerful and general computations. So what is it about a neural circuit that leads to one case or the other? Here, we derive a set of principles that inform how the connectivity of a spiking neural network determines the dimensionality of the activity that it produces. These show that, in some cases, highly localized features of connectivity have strong control over a network’s global dimensionality—an interesting finding in the context of, e.g., learning rules that occur locally. We also show how dimension can be much different than first meets the eye with typical “pairwise” measurements, and how stimuli and intrinsic connectivity interact in shaping the overall dimension of a network’s response." @default.
- W2885487308 created "2018-08-22" @default.
- W2885487308 creator A5002587800 @default.
- W2885487308 creator A5046602924 @default.
- W2885487308 creator A5056428592 @default.
- W2885487308 creator A5086928889 @default.
- W2885487308 date "2018-08-17" @default.
- W2885487308 modified "2023-10-16" @default.
- W2885487308 title "Dimensionality in recurrent spiking networks: global trends in activity and local origins in connectivity" @default.
- W2885487308 cites W1513082520 @default.
- W2885487308 cites W1524526027 @default.
- W2885487308 cites W1582091054 @default.
- W2885487308 cites W1973654985 @default.
- W2885487308 cites W1977691361 @default.
- W2885487308 cites W1977840440 @default.
- W2885487308 cites W1985392528 @default.
- W2885487308 cites W1998050452 @default.
- W2885487308 cites W2004478098 @default.
- W2885487308 cites W2005704307 @default.
- W2885487308 cites W2006123057 @default.
- W2885487308 cites W2008284899 @default.
- W2885487308 cites W2011523140 @default.
- W2885487308 cites W2012529953 @default.
- W2885487308 cites W2017539895 @default.
- W2885487308 cites W2022235653 @default.
- W2885487308 cites W2022542617 @default.
- W2885487308 cites W2026131545 @default.
- W2885487308 cites W2033710332 @default.
- W2885487308 cites W2035372517 @default.
- W2885487308 cites W2035849979 @default.
- W2885487308 cites W2036021747 @default.
- W2885487308 cites W2037623620 @default.
- W2885487308 cites W2041444821 @default.
- W2885487308 cites W2046278043 @default.
- W2885487308 cites W2048884755 @default.
- W2885487308 cites W2064921556 @default.
- W2885487308 cites W2069849731 @default.
- W2885487308 cites W2079960018 @default.
- W2885487308 cites W2087543137 @default.
- W2885487308 cites W2087889665 @default.
- W2885487308 cites W2093386234 @default.
- W2885487308 cites W2101420429 @default.
- W2885487308 cites W2106566258 @default.
- W2885487308 cites W2114538750 @default.
- W2885487308 cites W2116679324 @default.
- W2885487308 cites W2118925328 @default.
- W2885487308 cites W2121289914 @default.
- W2885487308 cites W2131423842 @default.
- W2885487308 cites W2145036121 @default.
- W2885487308 cites W2147238273 @default.
- W2885487308 cites W2151003399 @default.
- W2885487308 cites W2153201079 @default.
- W2885487308 cites W2153624566 @default.
- W2885487308 cites W2157154487 @default.
- W2885487308 cites W2160938187 @default.
- W2885487308 cites W2163218780 @default.
- W2885487308 cites W2170723553 @default.
- W2885487308 cites W2252248415 @default.
- W2885487308 cites W2268568430 @default.
- W2885487308 cites W2283409889 @default.
- W2885487308 cites W2309258625 @default.
- W2885487308 cites W2384550918 @default.
- W2885487308 cites W2529004582 @default.
- W2885487308 cites W2545883516 @default.
- W2885487308 cites W2552737632 @default.
- W2885487308 cites W2559748052 @default.
- W2885487308 cites W2566356335 @default.
- W2885487308 cites W2588048611 @default.
- W2885487308 cites W2738724892 @default.
- W2885487308 cites W2740565985 @default.
- W2885487308 cites W2792991748 @default.
- W2885487308 cites W2949808130 @default.
- W2885487308 cites W2950858158 @default.
- W2885487308 cites W2951200949 @default.
- W2885487308 cites W2953000845 @default.
- W2885487308 cites W3101150319 @default.
- W2885487308 doi "https://doi.org/10.1101/394684" @default.
- W2885487308 hasPublicationYear "2018" @default.
- W2885487308 type Work @default.
- W2885487308 sameAs 2885487308 @default.
- W2885487308 citedByCount "0" @default.
- W2885487308 crossrefType "posted-content" @default.
- W2885487308 hasAuthorship W2885487308A5002587800 @default.
- W2885487308 hasAuthorship W2885487308A5046602924 @default.
- W2885487308 hasAuthorship W2885487308A5056428592 @default.
- W2885487308 hasAuthorship W2885487308A5086928889 @default.
- W2885487308 hasBestOaLocation W28854873081 @default.
- W2885487308 hasConcept C111030470 @default.
- W2885487308 hasConcept C11413529 @default.
- W2885487308 hasConcept C154945302 @default.
- W2885487308 hasConcept C15744967 @default.
- W2885487308 hasConcept C169760540 @default.
- W2885487308 hasConcept C180747234 @default.
- W2885487308 hasConcept C202444582 @default.
- W2885487308 hasConcept C2779918689 @default.
- W2885487308 hasConcept C2984127161 @default.
- W2885487308 hasConcept C33676613 @default.
- W2885487308 hasConcept C33923547 @default.
- W2885487308 hasConcept C41008148 @default.
- W2885487308 hasConcept C45374587 @default.