Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885506667> ?p ?o ?g. }
- W2885506667 endingPage "1107" @default.
- W2885506667 startingPage "1093" @default.
- W2885506667 abstract "Lake waters are a significant source of drinking water and contribute to the local economy (e.g. enabling irrigation, offering opportunities for tourism, waterways for transport, and meeting utility water demands); therefore, the ability to accurately forecast lake water levels is important. However, given the significant lack of research with respect to forecasting water levels in small lakes (i.e. 0.05 km2 < area < 10 km2), the present study sought to address this knowledge gap by testing a pair of hypotheses: (1) it is possible to forecast water levels in small surface lakes using artificial neural networks (ANN), and (2) better water-level forecasts will be obtained when the wavelet transform (WT) is used as an input data pre-processing tool. Based on an analysis of a case study in Lake Biskupinskie (1.16 km2) in Poland and based on a range of model performance statistics (e.g. mean absolute error, root mean square error, mean squared error, coefficient of determination, mean absolute percentage error), both hypotheses were confirmed for monthly forecasting of lake water levels. ANNs provided good forecasting results, and WT pre-processing of input data led to even better forecasts. Additionally, it was found that meteorological variables did not have a significant impact in forecasting water-level fluctuations. In light of the results and the limited scope of the present study, proposed future research directions and problems to be resolved are discussed." @default.
- W2885506667 created "2018-08-22" @default.
- W2885506667 creator A5009380635 @default.
- W2885506667 creator A5015639176 @default.
- W2885506667 creator A5031199805 @default.
- W2885506667 date "2018-08-02" @default.
- W2885506667 modified "2023-10-01" @default.
- W2885506667 title "Forecasting surface water-level fluctuations of a small glacial lake in Poland using a wavelet-based artificial intelligence method" @default.
- W2885506667 cites W1609200543 @default.
- W2885506667 cites W1693700910 @default.
- W2885506667 cites W1964688226 @default.
- W2885506667 cites W1965024878 @default.
- W2885506667 cites W1966796394 @default.
- W2885506667 cites W1969561303 @default.
- W2885506667 cites W1975994995 @default.
- W2885506667 cites W1978904808 @default.
- W2885506667 cites W1979412857 @default.
- W2885506667 cites W1982201779 @default.
- W2885506667 cites W1985131767 @default.
- W2885506667 cites W1987102910 @default.
- W2885506667 cites W1990193139 @default.
- W2885506667 cites W1994381361 @default.
- W2885506667 cites W1998893231 @default.
- W2885506667 cites W2001643168 @default.
- W2885506667 cites W2003180829 @default.
- W2885506667 cites W2013100297 @default.
- W2885506667 cites W2013401728 @default.
- W2885506667 cites W2014181236 @default.
- W2885506667 cites W2016210396 @default.
- W2885506667 cites W2029673046 @default.
- W2885506667 cites W2032296707 @default.
- W2885506667 cites W2032954182 @default.
- W2885506667 cites W2033332045 @default.
- W2885506667 cites W2040414337 @default.
- W2885506667 cites W2040916393 @default.
- W2885506667 cites W2043596210 @default.
- W2885506667 cites W2046785557 @default.
- W2885506667 cites W2054061975 @default.
- W2885506667 cites W2054297536 @default.
- W2885506667 cites W2059900095 @default.
- W2885506667 cites W2068162295 @default.
- W2885506667 cites W2070826863 @default.
- W2885506667 cites W2071187143 @default.
- W2885506667 cites W2072697915 @default.
- W2885506667 cites W2073306165 @default.
- W2885506667 cites W2075039378 @default.
- W2885506667 cites W2078487998 @default.
- W2885506667 cites W2085141047 @default.
- W2885506667 cites W2092514020 @default.
- W2885506667 cites W2103504761 @default.
- W2885506667 cites W2123715374 @default.
- W2885506667 cites W2132984323 @default.
- W2885506667 cites W2151685967 @default.
- W2885506667 cites W2156250920 @default.
- W2885506667 cites W2167223201 @default.
- W2885506667 cites W2330086537 @default.
- W2885506667 cites W2339965688 @default.
- W2885506667 cites W2417999741 @default.
- W2885506667 cites W2477834368 @default.
- W2885506667 cites W2498448160 @default.
- W2885506667 cites W3037248615 @default.
- W2885506667 doi "https://doi.org/10.1007/s11600-018-0183-5" @default.
- W2885506667 hasPublicationYear "2018" @default.
- W2885506667 type Work @default.
- W2885506667 sameAs 2885506667 @default.
- W2885506667 citedByCount "17" @default.
- W2885506667 countsByYear W28855066672019 @default.
- W2885506667 countsByYear W28855066672020 @default.
- W2885506667 countsByYear W28855066672021 @default.
- W2885506667 countsByYear W28855066672022 @default.
- W2885506667 countsByYear W28855066672023 @default.
- W2885506667 crossrefType "journal-article" @default.
- W2885506667 hasAuthorship W2885506667A5009380635 @default.
- W2885506667 hasAuthorship W2885506667A5015639176 @default.
- W2885506667 hasAuthorship W2885506667A5031199805 @default.
- W2885506667 hasBestOaLocation W28855066671 @default.
- W2885506667 hasConcept C100834320 @default.
- W2885506667 hasConcept C100970517 @default.
- W2885506667 hasConcept C105795698 @default.
- W2885506667 hasConcept C127313418 @default.
- W2885506667 hasConcept C127413603 @default.
- W2885506667 hasConcept C1284942 @default.
- W2885506667 hasConcept C139945424 @default.
- W2885506667 hasConcept C146978453 @default.
- W2885506667 hasConcept C153294291 @default.
- W2885506667 hasConcept C154945302 @default.
- W2885506667 hasConcept C187320778 @default.
- W2885506667 hasConcept C188154048 @default.
- W2885506667 hasConcept C196216189 @default.
- W2885506667 hasConcept C199360897 @default.
- W2885506667 hasConcept C204323151 @default.
- W2885506667 hasConcept C205649164 @default.
- W2885506667 hasConcept C2778012447 @default.
- W2885506667 hasConcept C2778845824 @default.
- W2885506667 hasConcept C33923547 @default.
- W2885506667 hasConcept C39432304 @default.
- W2885506667 hasConcept C41008148 @default.
- W2885506667 hasConcept C47432892 @default.