Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885642017> ?p ?o ?g. }
- W2885642017 endingPage "52" @default.
- W2885642017 startingPage "46" @default.
- W2885642017 abstract "Background Convolutional neural networks (CNNs) are advanced artificial intelligence algorithms well suited to image classification tasks with variable features. These have been used to great effect in various real‐world applications including handwriting recognition, face detection, image search, and fraud prevention. We sought to retrain a robust CNN with coronal computed tomography (CT) images to classify osteomeatal complex (OMC) occlusion and assess the performance of this technology with rhinologic data. Methods The Google Inception‐V3 CNN trained with 1.28 million images was used as the base model. Preoperative coronal sections through the OMC were obtained from 239 patients enrolled in 2 prospective chronic rhinosinusitis (CRS) outcomes studies, labeled according to OMC status, and mirrored to obtain a set of 956 images. Using this data, the classification layer of Inception‐V3 was retrained in Python using a transfer learning method to adapt the CNN to the task of interpreting sinonasal CT images. Results The retrained neural network achieved 85% classification accuracy for OMC occlusion, with a 95% confidence interval for algorithm accuracy of 78% to 92%. Receiver operating characteristic (ROC) curve analysis on the test set confirmed good classification ability of the CNN with an area under the ROC curve (AUC) of 0.87, significantly different than both random guessing and a dominant classifier that predicts the most common class ( p < 0.0001). Conclusion Current state‐of‐the‐art CNNs may be able to learn clinically relevant information from 2‐dimensional sinonasal CT images with minimal supervision. Future work will extend this approach to 3‐dimensional images in order to further refine this technology for possible clinical applications." @default.
- W2885642017 created "2018-08-22" @default.
- W2885642017 creator A5019481761 @default.
- W2885642017 creator A5061668742 @default.
- W2885642017 creator A5064157593 @default.
- W2885642017 creator A5078444006 @default.
- W2885642017 date "2018-08-11" @default.
- W2885642017 modified "2023-10-16" @default.
- W2885642017 title "Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks" @default.
- W2885642017 cites W1496351691 @default.
- W2885642017 cites W149987944 @default.
- W2885642017 cites W1505910589 @default.
- W2885642017 cites W1976971229 @default.
- W2885642017 cites W2004975353 @default.
- W2885642017 cites W2050454960 @default.
- W2885642017 cites W2062624963 @default.
- W2885642017 cites W2117539524 @default.
- W2885642017 cites W2121394390 @default.
- W2885642017 cites W2139234097 @default.
- W2885642017 cites W2150711253 @default.
- W2885642017 cites W2156030748 @default.
- W2885642017 cites W2165698076 @default.
- W2885642017 cites W2183341477 @default.
- W2885642017 cites W2294068857 @default.
- W2885642017 cites W2295678160 @default.
- W2885642017 cites W2328176404 @default.
- W2885642017 cites W2419617124 @default.
- W2885642017 cites W2581082771 @default.
- W2885642017 cites W2622123897 @default.
- W2885642017 cites W2682360066 @default.
- W2885642017 cites W2738996641 @default.
- W2885642017 cites W2754751694 @default.
- W2885642017 cites W2758062614 @default.
- W2885642017 cites W2765458711 @default.
- W2885642017 cites W2768412660 @default.
- W2885642017 cites W2786638638 @default.
- W2885642017 cites W2789246292 @default.
- W2885642017 cites W2919115771 @default.
- W2885642017 cites W4254046232 @default.
- W2885642017 cites W4298683866 @default.
- W2885642017 cites W46629703 @default.
- W2885642017 doi "https://doi.org/10.1002/alr.22196" @default.
- W2885642017 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6318014" @default.
- W2885642017 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30098123" @default.
- W2885642017 hasPublicationYear "2018" @default.
- W2885642017 type Work @default.
- W2885642017 sameAs 2885642017 @default.
- W2885642017 citedByCount "48" @default.
- W2885642017 countsByYear W28856420172018 @default.
- W2885642017 countsByYear W28856420172019 @default.
- W2885642017 countsByYear W28856420172020 @default.
- W2885642017 countsByYear W28856420172021 @default.
- W2885642017 countsByYear W28856420172022 @default.
- W2885642017 countsByYear W28856420172023 @default.
- W2885642017 crossrefType "journal-article" @default.
- W2885642017 hasAuthorship W2885642017A5019481761 @default.
- W2885642017 hasAuthorship W2885642017A5061668742 @default.
- W2885642017 hasAuthorship W2885642017A5064157593 @default.
- W2885642017 hasAuthorship W2885642017A5078444006 @default.
- W2885642017 hasBestOaLocation W28856420171 @default.
- W2885642017 hasConcept C115961682 @default.
- W2885642017 hasConcept C119857082 @default.
- W2885642017 hasConcept C126838900 @default.
- W2885642017 hasConcept C13483470 @default.
- W2885642017 hasConcept C153180895 @default.
- W2885642017 hasConcept C154945302 @default.
- W2885642017 hasConcept C169258074 @default.
- W2885642017 hasConcept C169903167 @default.
- W2885642017 hasConcept C41008148 @default.
- W2885642017 hasConcept C50644808 @default.
- W2885642017 hasConcept C58471807 @default.
- W2885642017 hasConcept C71924100 @default.
- W2885642017 hasConcept C75294576 @default.
- W2885642017 hasConcept C81363708 @default.
- W2885642017 hasConcept C95623464 @default.
- W2885642017 hasConceptScore W2885642017C115961682 @default.
- W2885642017 hasConceptScore W2885642017C119857082 @default.
- W2885642017 hasConceptScore W2885642017C126838900 @default.
- W2885642017 hasConceptScore W2885642017C13483470 @default.
- W2885642017 hasConceptScore W2885642017C153180895 @default.
- W2885642017 hasConceptScore W2885642017C154945302 @default.
- W2885642017 hasConceptScore W2885642017C169258074 @default.
- W2885642017 hasConceptScore W2885642017C169903167 @default.
- W2885642017 hasConceptScore W2885642017C41008148 @default.
- W2885642017 hasConceptScore W2885642017C50644808 @default.
- W2885642017 hasConceptScore W2885642017C58471807 @default.
- W2885642017 hasConceptScore W2885642017C71924100 @default.
- W2885642017 hasConceptScore W2885642017C75294576 @default.
- W2885642017 hasConceptScore W2885642017C81363708 @default.
- W2885642017 hasConceptScore W2885642017C95623464 @default.
- W2885642017 hasFunder F4320337352 @default.
- W2885642017 hasFunder F4320337472 @default.
- W2885642017 hasIssue "1" @default.
- W2885642017 hasLocation W28856420171 @default.
- W2885642017 hasLocation W28856420172 @default.
- W2885642017 hasLocation W28856420173 @default.
- W2885642017 hasLocation W28856420174 @default.
- W2885642017 hasOpenAccess W2885642017 @default.