Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885647992> ?p ?o ?g. }
- W2885647992 abstract "Abstract Empirical time series of interacting entities, e.g. species abundances, are highly useful to study ecological mechanisms. Mathematical models are valuable tools to further elucidate those mechanisms and underlying processes. However, obtaining an agreement between model predictions and experimental observations remains a demanding task. As models always abstract from reality one parameter often summarizes several properties. Parameter measurements are performed in additional experiments independent of the ones delivering the time series. Transferring these parameter values to different settings may result in incorrect parametrizations. On top of that, the properties of organisms and thus the respective parameter values may vary considerably. These issues limit the use of a priori model parametrizations. In this study, we present a method suited for a direct estimation of model parameters and their variability from experimental time series data. We combine numerical simulations of a continuous-time dynamical population model with Bayesian inference, using a hierarchical framework that allows for variability of individual parameters. The method is applied to a comprehensive set of time series from a laboratory predator-prey system that features both steady states and cyclic population dynamics. Our model predictions are able to reproduce both steady states and cyclic dynamics of the data. Additionally to the direct estimates of the parameter values, the Bayesian approach also provides their uncertainties. We found that fitting cyclic population dynamics, which contain more information on the process rates than steady states, yields more precise parameter estimates. We detected significant variability among parameters of different time series and identified the variation in the maximum growth rate of the prey as a source for the transition from steady states to cyclic dynamics. By lending more flexibility to the model, our approach facilitates parametrizations and shows more easily which patterns in time series can be explained also by simple models. Applying Bayesian inference and dynamical population models in conjunction may help to quantify the profound variability in organismal properties in nature." @default.
- W2885647992 created "2018-08-22" @default.
- W2885647992 creator A5003826651 @default.
- W2885647992 creator A5031789308 @default.
- W2885647992 creator A5061693698 @default.
- W2885647992 creator A5082513649 @default.
- W2885647992 creator A5091802450 @default.
- W2885647992 date "2018-08-16" @default.
- W2885647992 modified "2023-10-05" @default.
- W2885647992 title "Estimating parameters from multiple time series of population dynamics using Bayesian inference" @default.
- W2885647992 cites W1481199020 @default.
- W2885647992 cites W1505095643 @default.
- W2885647992 cites W1548917933 @default.
- W2885647992 cites W1852123823 @default.
- W2885647992 cites W1959612350 @default.
- W2885647992 cites W1975472370 @default.
- W2885647992 cites W1981457167 @default.
- W2885647992 cites W1988681504 @default.
- W2885647992 cites W2000915153 @default.
- W2885647992 cites W2015781727 @default.
- W2885647992 cites W2017206497 @default.
- W2885647992 cites W2017408398 @default.
- W2885647992 cites W2024969564 @default.
- W2885647992 cites W2032081489 @default.
- W2885647992 cites W2035000936 @default.
- W2885647992 cites W2063927278 @default.
- W2885647992 cites W2069239986 @default.
- W2885647992 cites W2072946283 @default.
- W2885647992 cites W2077626590 @default.
- W2885647992 cites W2083512827 @default.
- W2885647992 cites W2093752084 @default.
- W2885647992 cites W2098863507 @default.
- W2885647992 cites W2105320140 @default.
- W2885647992 cites W2107625277 @default.
- W2885647992 cites W2108654968 @default.
- W2885647992 cites W2113720451 @default.
- W2885647992 cites W2118337700 @default.
- W2885647992 cites W2130027567 @default.
- W2885647992 cites W2134012062 @default.
- W2885647992 cites W213523138 @default.
- W2885647992 cites W2145649717 @default.
- W2885647992 cites W2149145651 @default.
- W2885647992 cites W2152246075 @default.
- W2885647992 cites W2155483606 @default.
- W2885647992 cites W2158673360 @default.
- W2885647992 cites W2158879083 @default.
- W2885647992 cites W2169280277 @default.
- W2885647992 cites W2346470296 @default.
- W2885647992 cites W2407404175 @default.
- W2885647992 cites W2497270289 @default.
- W2885647992 cites W2503562489 @default.
- W2885647992 cites W2530192738 @default.
- W2885647992 cites W2546609803 @default.
- W2885647992 cites W2580608703 @default.
- W2885647992 cites W2610632796 @default.
- W2885647992 cites W2614942369 @default.
- W2885647992 cites W2763448669 @default.
- W2885647992 cites W2765328067 @default.
- W2885647992 cites W2770536835 @default.
- W2885647992 cites W2799657658 @default.
- W2885647992 cites W2804035474 @default.
- W2885647992 cites W2846965669 @default.
- W2885647992 cites W2883167768 @default.
- W2885647992 cites W2887763862 @default.
- W2885647992 cites W2892131716 @default.
- W2885647992 cites W2897117039 @default.
- W2885647992 cites W2898703062 @default.
- W2885647992 cites W2470554667 @default.
- W2885647992 doi "https://doi.org/10.1101/392449" @default.
- W2885647992 hasPublicationYear "2018" @default.
- W2885647992 type Work @default.
- W2885647992 sameAs 2885647992 @default.
- W2885647992 citedByCount "0" @default.
- W2885647992 crossrefType "posted-content" @default.
- W2885647992 hasAuthorship W2885647992A5003826651 @default.
- W2885647992 hasAuthorship W2885647992A5031789308 @default.
- W2885647992 hasAuthorship W2885647992A5061693698 @default.
- W2885647992 hasAuthorship W2885647992A5082513649 @default.
- W2885647992 hasAuthorship W2885647992A5091802450 @default.
- W2885647992 hasBestOaLocation W28856479921 @default.
- W2885647992 hasConcept C105795698 @default.
- W2885647992 hasConcept C107673813 @default.
- W2885647992 hasConcept C111472728 @default.
- W2885647992 hasConcept C11413529 @default.
- W2885647992 hasConcept C121332964 @default.
- W2885647992 hasConcept C121864883 @default.
- W2885647992 hasConcept C138885662 @default.
- W2885647992 hasConcept C143724316 @default.
- W2885647992 hasConcept C144024400 @default.
- W2885647992 hasConcept C149923435 @default.
- W2885647992 hasConcept C151730666 @default.
- W2885647992 hasConcept C154945302 @default.
- W2885647992 hasConcept C160234255 @default.
- W2885647992 hasConcept C167928553 @default.
- W2885647992 hasConcept C2776214188 @default.
- W2885647992 hasConcept C2908647359 @default.
- W2885647992 hasConcept C33923547 @default.
- W2885647992 hasConcept C41008148 @default.
- W2885647992 hasConcept C75553542 @default.
- W2885647992 hasConcept C86803240 @default.