Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885735575> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2885735575 endingPage "202" @default.
- W2885735575 startingPage "191" @default.
- W2885735575 abstract "Many image classification models have been introduced to help tackle the foremost issue of recognition accuracy. Image classification is one of the core problems in Computer Vision field with a large variety of practical applications. Examples include: object recognition for robotic manipulation, pedestrian or obstacle detection for autonomous vehicles, among others. A lot of attention has been associated with Machine Learning, specifically neural networks such as the Convolutional Neural Network (CNN) winning image classification competitions. This work proposes the study and investigation of such a CNN architecture model (i.e. Inception-v3) to establish whether it would work best in terms of accuracy and efficiency with new image datasets via Transfer Learning. The retrained model is evaluated, and the results are compared to some state-of-the-art approaches." @default.
- W2885735575 created "2018-08-22" @default.
- W2885735575 creator A5012033716 @default.
- W2885735575 creator A5032454100 @default.
- W2885735575 creator A5080362193 @default.
- W2885735575 date "2018-08-11" @default.
- W2885735575 modified "2023-10-11" @default.
- W2885735575 title "A Study on CNN Transfer Learning for Image Classification" @default.
- W2885735575 cites W2014372423 @default.
- W2885735575 cites W2097117768 @default.
- W2885735575 cites W2125375287 @default.
- W2885735575 cites W2183341477 @default.
- W2885735575 cites W2506235761 @default.
- W2885735575 cites W2801492038 @default.
- W2885735575 doi "https://doi.org/10.1007/978-3-319-97982-3_16" @default.
- W2885735575 hasPublicationYear "2018" @default.
- W2885735575 type Work @default.
- W2885735575 sameAs 2885735575 @default.
- W2885735575 citedByCount "202" @default.
- W2885735575 countsByYear W28857355752019 @default.
- W2885735575 countsByYear W28857355752020 @default.
- W2885735575 countsByYear W28857355752021 @default.
- W2885735575 countsByYear W28857355752022 @default.
- W2885735575 countsByYear W28857355752023 @default.
- W2885735575 crossrefType "book-chapter" @default.
- W2885735575 hasAuthorship W2885735575A5012033716 @default.
- W2885735575 hasAuthorship W2885735575A5032454100 @default.
- W2885735575 hasAuthorship W2885735575A5080362193 @default.
- W2885735575 hasConcept C150899416 @default.
- W2885735575 hasConcept C153180895 @default.
- W2885735575 hasConcept C154945302 @default.
- W2885735575 hasConcept C41008148 @default.
- W2885735575 hasConceptScore W2885735575C150899416 @default.
- W2885735575 hasConceptScore W2885735575C153180895 @default.
- W2885735575 hasConceptScore W2885735575C154945302 @default.
- W2885735575 hasConceptScore W2885735575C41008148 @default.
- W2885735575 hasLocation W28857355751 @default.
- W2885735575 hasOpenAccess W2885735575 @default.
- W2885735575 hasPrimaryLocation W28857355751 @default.
- W2885735575 hasRelatedWork W2738221750 @default.
- W2885735575 hasRelatedWork W2766381040 @default.
- W2885735575 hasRelatedWork W2887603104 @default.
- W2885735575 hasRelatedWork W2909857627 @default.
- W2885735575 hasRelatedWork W2942629287 @default.
- W2885735575 hasRelatedWork W3107474891 @default.
- W2885735575 hasRelatedWork W3153891452 @default.
- W2885735575 hasRelatedWork W3172364442 @default.
- W2885735575 hasRelatedWork W4220663171 @default.
- W2885735575 hasRelatedWork W4245792239 @default.
- W2885735575 isParatext "false" @default.
- W2885735575 isRetracted "false" @default.
- W2885735575 magId "2885735575" @default.
- W2885735575 workType "book-chapter" @default.