Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885752284> ?p ?o ?g. }
- W2885752284 abstract "Lay Summary Evidence before this study Our knowledge of factors which predict outcome in first episode psychosis (FEP) is incomplete. Poor premorbid adjustment, history of developmental disorder, symptom severity at baseline and duration of untreated psychosis are the most replicated predictors of poor clinical, functional, cognitive, and biological outcomes. Yet, such group level differences are not always replicated in individuals, nor can observational results be clearly equated with causation. Advanced machine learning techniques have potential to revolutionise medicine by looking at causation and the prediction of individual patient outcome. Within psychiatry, Koutsouleris et al employed machine learning to predict 4- and 52-week functional outcome in FEP to a 75% and 73.8% test-fold balanced accuracy on repeated nested internal cross-validation. The authors suggest that before employing a machine learning model “into real-world care, replication is needed in external first episode samples”. Added value of this study We believe our study to be the first externally validated evidence, in a temporally and geographically independent cohort, for predictive modelling in FEP at an individual patient level. Our results demonstrate the ability to predict both symptom remission and functioning (in employment, education or training (EET)) at one-year. The performance of our EET model was particularly robust, with an ability to accurately predict the one-year EET outcome in more than 85% of patients. Regularised regression results in sparse models which are uniquely interpretable and identify meaningful predictors of recovery including specific individual PANSS items, and social support. This builds on existing studies of group-level differences and the elegant work of Koutsouleris et al. Implications of all the available evidence We have demonstrated the externally validated ability to accurately predict one-year symptomatic and functional status in individual patients with FEP. External validation in a plausibly related temporally and geographically distinct population assesses model transportability to an untested situation rather than simply reproducibility alone. We propose that our results represent important and exciting progress in unlocking the potential of predictive modelling in psychiatric illness. The next step prior to implementation into routine clinical practice would be to establish whether, by the accurate identification of individuals who will have poor outcomes, we can meaningful intervene to improve their prognosis. Abstract Background Early illness course correlates with long-term outcome in psychosis. Accurate prediction could allow more focused intervention. Earlier intervention corresponds to significantly better symptomatic and functional outcomes. We use routinely collected baseline demographic and clinical characteristics to predict employment, education or training (EET) status, and symptom remission in patients with first episode psychosis (FEP) at 1 year. Methods 83 FEP patients were recruited from National Health Service (NHS) Glasgow between 2011 and 2014 to a 24-month prospective cohort study with regular assessment of demographic and psychometric measures. An external independent cohort of 79 FEP patients were recruited from NHS Glasgow and Edinburgh during a 12-month study between 2006 and 2009. Elastic net regularised logistic regression models were built to predict binary EET status, period and point remission outcomes at 1 year on 83 Glasgow patients (training dataset). Models were externally validated on an independent dataset of 79 patients from Glasgow and Edinburgh (validation dataset). Only baseline predictors shared across both cohorts were made available for model training and validation. Outcomes After excluding participants with missing outcomes, models were built on the training dataset for EET status, period and point remission outcomes and externally validated on the validation dataset. Models predicted EET status, period and point remission with ROC area under curve (AUC) performances of 0.876 (95%CI: 0.864, 0.887), 0.630 (95%CI: 0.612, 0.647) and 0.652 (95%CI: 0.635, 0.670) respectively. Positive predictors of EET included baseline EET and living with spouse/children. Negative predictors included higher PANSS suspiciousness, hostility and delusions scores. Positive predictors for symptom remission included living with spouse/children, and affective symptoms on the Positive and Negative Syndrome Scale (PANSS). Negative predictors of remission included passive social withdrawal symptoms on PANSS. Interpretation Using advanced statistical machine learning techniques, we provide the first externally validated evidence for the ability to predict 1-year EET status and symptom remission in FEP patients. Funding The authors acknowledge financial support from NHS Research Scotland, the Chief Scientist Office, the Wellcome Trust, and the Scottish Mental Health Research Network." @default.
- W2885752284 created "2018-08-22" @default.
- W2885752284 creator A5009175089 @default.
- W2885752284 creator A5011956364 @default.
- W2885752284 creator A5025816641 @default.
- W2885752284 creator A5028682127 @default.
- W2885752284 creator A5036411386 @default.
- W2885752284 creator A5047540463 @default.
- W2885752284 creator A5047863656 @default.
- W2885752284 creator A5068790369 @default.
- W2885752284 creator A5086838275 @default.
- W2885752284 creator A5087439195 @default.
- W2885752284 date "2018-08-13" @default.
- W2885752284 modified "2023-09-27" @default.
- W2885752284 title "Predicting One-Year Outcome in First Episode Psychosis using Machine Learning" @default.
- W2885752284 cites W1593874197 @default.
- W2885752284 cites W1694452166 @default.
- W2885752284 cites W1897139626 @default.
- W2885752284 cites W1966733434 @default.
- W2885752284 cites W1994501680 @default.
- W2885752284 cites W2005564345 @default.
- W2885752284 cites W2006617902 @default.
- W2885752284 cites W2008759189 @default.
- W2885752284 cites W2012463332 @default.
- W2885752284 cites W2016140755 @default.
- W2885752284 cites W2050034286 @default.
- W2885752284 cites W2060165457 @default.
- W2885752284 cites W2065974896 @default.
- W2885752284 cites W2083764460 @default.
- W2885752284 cites W2089463633 @default.
- W2885752284 cites W2122825543 @default.
- W2885752284 cites W2134501275 @default.
- W2885752284 cites W2135689380 @default.
- W2885752284 cites W2139050031 @default.
- W2885752284 cites W2139568741 @default.
- W2885752284 cites W2140606211 @default.
- W2885752284 cites W2147626660 @default.
- W2885752284 cites W2152371196 @default.
- W2885752284 cites W2153505289 @default.
- W2885752284 cites W2153579501 @default.
- W2885752284 cites W2154286581 @default.
- W2885752284 cites W2160994280 @default.
- W2885752284 cites W2166281097 @default.
- W2885752284 cites W2167697759 @default.
- W2885752284 cites W2169114246 @default.
- W2885752284 cites W2169218860 @default.
- W2885752284 cites W2243403757 @default.
- W2885752284 cites W2254050631 @default.
- W2885752284 cites W2328176404 @default.
- W2885752284 cites W2332877535 @default.
- W2885752284 cites W2346393506 @default.
- W2885752284 cites W2515122989 @default.
- W2885752284 cites W2610720889 @default.
- W2885752284 cites W2760604407 @default.
- W2885752284 cites W2761844088 @default.
- W2885752284 cites W2767400859 @default.
- W2885752284 cites W3115792767 @default.
- W2885752284 cites W4248886280 @default.
- W2885752284 doi "https://doi.org/10.1101/390096" @default.
- W2885752284 hasPublicationYear "2018" @default.
- W2885752284 type Work @default.
- W2885752284 sameAs 2885752284 @default.
- W2885752284 citedByCount "0" @default.
- W2885752284 crossrefType "posted-content" @default.
- W2885752284 hasAuthorship W2885752284A5009175089 @default.
- W2885752284 hasAuthorship W2885752284A5011956364 @default.
- W2885752284 hasAuthorship W2885752284A5025816641 @default.
- W2885752284 hasAuthorship W2885752284A5028682127 @default.
- W2885752284 hasAuthorship W2885752284A5036411386 @default.
- W2885752284 hasAuthorship W2885752284A5047540463 @default.
- W2885752284 hasAuthorship W2885752284A5047863656 @default.
- W2885752284 hasAuthorship W2885752284A5068790369 @default.
- W2885752284 hasAuthorship W2885752284A5086838275 @default.
- W2885752284 hasAuthorship W2885752284A5087439195 @default.
- W2885752284 hasBestOaLocation W28857522842 @default.
- W2885752284 hasConcept C118552586 @default.
- W2885752284 hasConcept C119857082 @default.
- W2885752284 hasConcept C126322002 @default.
- W2885752284 hasConcept C144237770 @default.
- W2885752284 hasConcept C148220186 @default.
- W2885752284 hasConcept C15744967 @default.
- W2885752284 hasConcept C166151441 @default.
- W2885752284 hasConcept C17744445 @default.
- W2885752284 hasConcept C199539241 @default.
- W2885752284 hasConcept C201903717 @default.
- W2885752284 hasConcept C23131810 @default.
- W2885752284 hasConcept C2776412080 @default.
- W2885752284 hasConcept C2779727114 @default.
- W2885752284 hasConcept C33923547 @default.
- W2885752284 hasConcept C41008148 @default.
- W2885752284 hasConcept C70410870 @default.
- W2885752284 hasConcept C71924100 @default.
- W2885752284 hasConceptScore W2885752284C118552586 @default.
- W2885752284 hasConceptScore W2885752284C119857082 @default.
- W2885752284 hasConceptScore W2885752284C126322002 @default.
- W2885752284 hasConceptScore W2885752284C144237770 @default.
- W2885752284 hasConceptScore W2885752284C148220186 @default.
- W2885752284 hasConceptScore W2885752284C15744967 @default.
- W2885752284 hasConceptScore W2885752284C166151441 @default.
- W2885752284 hasConceptScore W2885752284C17744445 @default.