Matches in SemOpenAlex for { <https://semopenalex.org/work/W2885921110> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2885921110 abstract "Breast cancer emerged quickly to women above 40 years which cause death. Whereas other cancers has less compared with breast cancer, similarly it spreads among rural and urban areas. Smoking women's affect more than 30–40%, long-term smokers has increase in risk factor on the other side. The utilization of machine learning and data mining approach's has changed the entire procedure of breast malignancy verdict and prediction. Breast Cancer verdict recognizes kindhearted from dangerous breast knots and Breast Cancer diagnosis predicts when Breast Cancer is probably going to repeat in patients that have had their tumors extracted. The proposal is to compare a better solution for analyzing breast cancer using data mining techniques and which ensures high accuracy. The disclosure of the endurance rate or survivability of a specific disease is conceivable by extricating the information from the information identified with that disease. Measurable learning and data mining, can build up the relationship of the factors to the result. The major aim of this research is to discover the overview of the present research being approved out utilizing the data mining techniques to improve the breast cancer determination. Mostly, it discusses about the performance of conventional the classification strategies C4.5, ID3, C5.0, Apriori, and Naive Bayes in breast cancer investigation. The classification process begins with statistical data fetched from healthcares, utilizes Weka software to analyze results and predicting endurance rate of breast cancer patients. Based on Experimental evaluations, C5.0 classifier enhances accuracy 4.56%, and reduced the Mean Absolute Error (MAE) 0.141 and Root Mean Squared Error (RMSE) 0.155 of the proposed C5.0 classifier compared than existing classifiers." @default.
- W2885921110 created "2018-08-22" @default.
- W2885921110 creator A5067085902 @default.
- W2885921110 creator A5083702540 @default.
- W2885921110 date "2018-01-01" @default.
- W2885921110 modified "2023-09-26" @default.
- W2885921110 title "Determination of Breast Cancer Using Data Mining Techniques" @default.
- W2885921110 doi "https://doi.org/10.5958/0973-9130.2018.00169.x" @default.
- W2885921110 hasPublicationYear "2018" @default.
- W2885921110 type Work @default.
- W2885921110 sameAs 2885921110 @default.
- W2885921110 citedByCount "0" @default.
- W2885921110 crossrefType "journal-article" @default.
- W2885921110 hasAuthorship W2885921110A5067085902 @default.
- W2885921110 hasAuthorship W2885921110A5083702540 @default.
- W2885921110 hasConcept C119857082 @default.
- W2885921110 hasConcept C121608353 @default.
- W2885921110 hasConcept C12267149 @default.
- W2885921110 hasConcept C124101348 @default.
- W2885921110 hasConcept C126322002 @default.
- W2885921110 hasConcept C143998085 @default.
- W2885921110 hasConcept C154945302 @default.
- W2885921110 hasConcept C2779399171 @default.
- W2885921110 hasConcept C41008148 @default.
- W2885921110 hasConcept C52001869 @default.
- W2885921110 hasConcept C530470458 @default.
- W2885921110 hasConcept C71924100 @default.
- W2885921110 hasConceptScore W2885921110C119857082 @default.
- W2885921110 hasConceptScore W2885921110C121608353 @default.
- W2885921110 hasConceptScore W2885921110C12267149 @default.
- W2885921110 hasConceptScore W2885921110C124101348 @default.
- W2885921110 hasConceptScore W2885921110C126322002 @default.
- W2885921110 hasConceptScore W2885921110C143998085 @default.
- W2885921110 hasConceptScore W2885921110C154945302 @default.
- W2885921110 hasConceptScore W2885921110C2779399171 @default.
- W2885921110 hasConceptScore W2885921110C41008148 @default.
- W2885921110 hasConceptScore W2885921110C52001869 @default.
- W2885921110 hasConceptScore W2885921110C530470458 @default.
- W2885921110 hasConceptScore W2885921110C71924100 @default.
- W2885921110 hasLocation W28859211101 @default.
- W2885921110 hasOpenAccess W2885921110 @default.
- W2885921110 hasPrimaryLocation W28859211101 @default.
- W2885921110 hasRelatedWork W1522532289 @default.
- W2885921110 hasRelatedWork W1987915768 @default.
- W2885921110 hasRelatedWork W2000171270 @default.
- W2885921110 hasRelatedWork W2080263923 @default.
- W2885921110 hasRelatedWork W2092445088 @default.
- W2885921110 hasRelatedWork W2098237671 @default.
- W2885921110 hasRelatedWork W2106946771 @default.
- W2885921110 hasRelatedWork W2109964634 @default.
- W2885921110 hasRelatedWork W2111941911 @default.
- W2885921110 hasRelatedWork W2133373369 @default.
- W2885921110 hasRelatedWork W2151321227 @default.
- W2885921110 hasRelatedWork W2243198131 @default.
- W2885921110 hasRelatedWork W2786329206 @default.
- W2885921110 hasRelatedWork W2928985987 @default.
- W2885921110 hasRelatedWork W2931975089 @default.
- W2885921110 hasRelatedWork W3008338545 @default.
- W2885921110 hasRelatedWork W3092054857 @default.
- W2885921110 hasRelatedWork W3132900032 @default.
- W2885921110 hasRelatedWork W3171917168 @default.
- W2885921110 hasRelatedWork W3188240681 @default.
- W2885921110 isParatext "false" @default.
- W2885921110 isRetracted "false" @default.
- W2885921110 magId "2885921110" @default.
- W2885921110 workType "article" @default.