Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886013923> ?p ?o ?g. }
- W2886013923 endingPage "576" @default.
- W2886013923 startingPage "559" @default.
- W2886013923 abstract "In an increasing number of cases involving estimation of a response surface, one is often confronted with situations where there are several factors to be evaluated, but experiments are prohibitively expensive. In such scenarios, learning algorithms can actively query the user or other resources to determine the most informative settings to be tested. In this article, we propose an active learning methodology based on the fundamental idea of adding a ridge and a Laplacian penalty to the V-optimal design to shrink the weight of less significant factors, while looking for the most informative settings to be tested. To leverage the intrinsic geometry of the factor settings in highly nonlinear spaces, we generalize the proposed methodology to local regression. We also propose a simple sequential design strategy for efficient determination of subsequent experiments based on the information from previous experiments. The proposed methodology is particularly suited for problems involving expensive experiments with a high standard deviation of the error. We apply the proposed methodology to a simulated wind tunnel testing and compare the result with an existing practice. We also evaluate the estimation accuracy of the proposed methodology using the paper helicopter case study. Finally, through extensive simulated experiments, we demonstrate the performance of the proposed methodology against classic response surface methods in the literature." @default.
- W2886013923 created "2018-08-22" @default.
- W2886013923 creator A5056930715 @default.
- W2886013923 creator A5077570207 @default.
- W2886013923 creator A5077624638 @default.
- W2886013923 creator A5087916151 @default.
- W2886013923 date "2019-02-19" @default.
- W2886013923 modified "2023-10-12" @default.
- W2886013923 title "Sequential Laplacian regularized V-optimal design of experiments for response surface modeling of expensive tests: An application in wind tunnel testing" @default.
- W2886013923 cites W1510052597 @default.
- W2886013923 cites W1516061453 @default.
- W2886013923 cites W151777208 @default.
- W2886013923 cites W1576430025 @default.
- W2886013923 cites W159436435 @default.
- W2886013923 cites W1965258535 @default.
- W2886013923 cites W1967447455 @default.
- W2886013923 cites W1967692477 @default.
- W2886013923 cites W1973412675 @default.
- W2886013923 cites W1978137304 @default.
- W2886013923 cites W1980828061 @default.
- W2886013923 cites W1981039871 @default.
- W2886013923 cites W1989958607 @default.
- W2886013923 cites W1994259901 @default.
- W2886013923 cites W2003233920 @default.
- W2886013923 cites W2009713937 @default.
- W2886013923 cites W2012599677 @default.
- W2886013923 cites W2017977879 @default.
- W2886013923 cites W2018044188 @default.
- W2886013923 cites W2018054122 @default.
- W2886013923 cites W2020732830 @default.
- W2886013923 cites W2030796235 @default.
- W2886013923 cites W2033306210 @default.
- W2886013923 cites W2037861009 @default.
- W2886013923 cites W2039522160 @default.
- W2886013923 cites W2042264917 @default.
- W2886013923 cites W2046600410 @default.
- W2886013923 cites W2057869439 @default.
- W2886013923 cites W2070425636 @default.
- W2886013923 cites W2081709852 @default.
- W2886013923 cites W2085499762 @default.
- W2886013923 cites W2100355122 @default.
- W2886013923 cites W2103297046 @default.
- W2886013923 cites W2108667734 @default.
- W2886013923 cites W2109751703 @default.
- W2886013923 cites W2112372720 @default.
- W2886013923 cites W2125437500 @default.
- W2886013923 cites W2130941826 @default.
- W2886013923 cites W2136652101 @default.
- W2886013923 cites W2140691217 @default.
- W2886013923 cites W2140723292 @default.
- W2886013923 cites W2141804799 @default.
- W2886013923 cites W2149721706 @default.
- W2886013923 cites W2162538033 @default.
- W2886013923 cites W2168405694 @default.
- W2886013923 cites W2170832294 @default.
- W2886013923 cites W2237440835 @default.
- W2886013923 cites W2313383114 @default.
- W2886013923 cites W2592279581 @default.
- W2886013923 cites W2801034590 @default.
- W2886013923 cites W2949071206 @default.
- W2886013923 cites W3100329718 @default.
- W2886013923 cites W4230925129 @default.
- W2886013923 cites W4230962939 @default.
- W2886013923 cites W4237151101 @default.
- W2886013923 cites W4242186041 @default.
- W2886013923 cites W4252426133 @default.
- W2886013923 cites W4300031234 @default.
- W2886013923 cites W65885954 @default.
- W2886013923 doi "https://doi.org/10.1080/24725854.2018.1508928" @default.
- W2886013923 hasPublicationYear "2019" @default.
- W2886013923 type Work @default.
- W2886013923 sameAs 2886013923 @default.
- W2886013923 citedByCount "11" @default.
- W2886013923 countsByYear W28860139232019 @default.
- W2886013923 countsByYear W28860139232020 @default.
- W2886013923 countsByYear W28860139232021 @default.
- W2886013923 countsByYear W28860139232022 @default.
- W2886013923 countsByYear W28860139232023 @default.
- W2886013923 crossrefType "journal-article" @default.
- W2886013923 hasAuthorship W2886013923A5056930715 @default.
- W2886013923 hasAuthorship W2886013923A5077570207 @default.
- W2886013923 hasAuthorship W2886013923A5077624638 @default.
- W2886013923 hasAuthorship W2886013923A5087916151 @default.
- W2886013923 hasConcept C100086909 @default.
- W2886013923 hasConcept C105795698 @default.
- W2886013923 hasConcept C111472728 @default.
- W2886013923 hasConcept C11413529 @default.
- W2886013923 hasConcept C119857082 @default.
- W2886013923 hasConcept C120665830 @default.
- W2886013923 hasConcept C121332964 @default.
- W2886013923 hasConcept C126255220 @default.
- W2886013923 hasConcept C127413603 @default.
- W2886013923 hasConcept C134306372 @default.
- W2886013923 hasConcept C138885662 @default.
- W2886013923 hasConcept C146978453 @default.
- W2886013923 hasConcept C153083717 @default.
- W2886013923 hasConcept C158622935 @default.
- W2886013923 hasConcept C165700671 @default.