Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886017866> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2886017866 endingPage "126" @default.
- W2886017866 startingPage "97" @default.
- W2886017866 abstract "The task of the 2017 Soccer Prediction Challenge was to use machine learning to predict the outcome of future soccer matches based on a data set describing the match outcomes of 216,743 past soccer matches. One of the goals of the Challenge was to gauge where the limits of predictability lie with this type of commonly available data. Another goal was to pose a real-world machine learning challenge with a fixed time line, involving the prediction of real future events. Here, we present two novel ideas for integrating soccer domain knowledge into the modeling process. Based on these ideas, we developed two new feature engineering methods for match outcome prediction, which we denote as recency feature extraction and rating feature learning. Using these methods, we constructed two learning sets from the Challenge data. The top-ranking model of the 2017 Soccer Prediction Challenge was our k-nearest neighbor model trained on the rating feature learning set. In further experiments, we could slightly improve on this performance with an ensemble of extreme gradient boosted trees (XGBoost). Our study suggests that a key factor in soccer match outcome prediction lies in the successful incorporation of domain knowledge into the machine learning modeling process." @default.
- W2886017866 created "2018-08-22" @default.
- W2886017866 creator A5011609464 @default.
- W2886017866 creator A5017700829 @default.
- W2886017866 creator A5091132218 @default.
- W2886017866 date "2018-08-07" @default.
- W2886017866 modified "2023-10-18" @default.
- W2886017866 title "Incorporating domain knowledge in machine learning for soccer outcome prediction" @default.
- W2886017866 cites W1482003017 @default.
- W2886017866 cites W1561789977 @default.
- W2886017866 cites W1678356000 @default.
- W2886017866 cites W1966701961 @default.
- W2886017866 cites W1968507428 @default.
- W2886017866 cites W1982166547 @default.
- W2886017866 cites W1986797382 @default.
- W2886017866 cites W1998843827 @default.
- W2886017866 cites W2045621032 @default.
- W2886017866 cites W2063948020 @default.
- W2886017866 cites W2065276098 @default.
- W2886017866 cites W2122111042 @default.
- W2886017866 cites W2129099765 @default.
- W2886017866 cites W2135775480 @default.
- W2886017866 cites W2136744117 @default.
- W2886017866 cites W2142827986 @default.
- W2886017866 cites W2152195021 @default.
- W2886017866 cites W2165299997 @default.
- W2886017866 cites W2294876931 @default.
- W2886017866 cites W2520564469 @default.
- W2886017866 cites W2797002824 @default.
- W2886017866 cites W2797380978 @default.
- W2886017866 cites W2800560076 @default.
- W2886017866 cites W2803074720 @default.
- W2886017866 cites W2867530491 @default.
- W2886017866 doi "https://doi.org/10.1007/s10994-018-5747-8" @default.
- W2886017866 hasPublicationYear "2018" @default.
- W2886017866 type Work @default.
- W2886017866 sameAs 2886017866 @default.
- W2886017866 citedByCount "35" @default.
- W2886017866 countsByYear W28860178662018 @default.
- W2886017866 countsByYear W28860178662019 @default.
- W2886017866 countsByYear W28860178662020 @default.
- W2886017866 countsByYear W28860178662021 @default.
- W2886017866 countsByYear W28860178662022 @default.
- W2886017866 countsByYear W28860178662023 @default.
- W2886017866 crossrefType "journal-article" @default.
- W2886017866 hasAuthorship W2886017866A5011609464 @default.
- W2886017866 hasAuthorship W2886017866A5017700829 @default.
- W2886017866 hasAuthorship W2886017866A5091132218 @default.
- W2886017866 hasBestOaLocation W28860178661 @default.
- W2886017866 hasConcept C119857082 @default.
- W2886017866 hasConcept C134306372 @default.
- W2886017866 hasConcept C144237770 @default.
- W2886017866 hasConcept C148220186 @default.
- W2886017866 hasConcept C154945302 @default.
- W2886017866 hasConcept C207685749 @default.
- W2886017866 hasConcept C33923547 @default.
- W2886017866 hasConcept C36503486 @default.
- W2886017866 hasConcept C41008148 @default.
- W2886017866 hasConceptScore W2886017866C119857082 @default.
- W2886017866 hasConceptScore W2886017866C134306372 @default.
- W2886017866 hasConceptScore W2886017866C144237770 @default.
- W2886017866 hasConceptScore W2886017866C148220186 @default.
- W2886017866 hasConceptScore W2886017866C154945302 @default.
- W2886017866 hasConceptScore W2886017866C207685749 @default.
- W2886017866 hasConceptScore W2886017866C33923547 @default.
- W2886017866 hasConceptScore W2886017866C36503486 @default.
- W2886017866 hasConceptScore W2886017866C41008148 @default.
- W2886017866 hasIssue "1" @default.
- W2886017866 hasLocation W28860178661 @default.
- W2886017866 hasOpenAccess W2886017866 @default.
- W2886017866 hasPrimaryLocation W28860178661 @default.
- W2886017866 hasRelatedWork W1525380347 @default.
- W2886017866 hasRelatedWork W1525691822 @default.
- W2886017866 hasRelatedWork W2358751369 @default.
- W2886017866 hasRelatedWork W2409826714 @default.
- W2886017866 hasRelatedWork W2799992032 @default.
- W2886017866 hasRelatedWork W2801011252 @default.
- W2886017866 hasRelatedWork W2857761167 @default.
- W2886017866 hasRelatedWork W2911810434 @default.
- W2886017866 hasRelatedWork W4210794429 @default.
- W2886017866 hasRelatedWork W4252617674 @default.
- W2886017866 hasVolume "108" @default.
- W2886017866 isParatext "false" @default.
- W2886017866 isRetracted "false" @default.
- W2886017866 magId "2886017866" @default.
- W2886017866 workType "article" @default.