Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886026853> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2886026853 endingPage "127" @default.
- W2886026853 startingPage "124" @default.
- W2886026853 abstract "Frequent Pattern Mining is one of the most important tasks to extract meaningful and useful information from raw data. This task aims to extract item-sets that represent any type of homogeneity and regularity in data. Although many efficient algorithms have been developed in this regard, the growing interest in data has caused the performance of existing pattern mining techniques to be dropped. The goal of this paper is to propose new efficient pattern mining algorithms to work in big data. The existing pattern mining algorithms are based on homogeneity and regularity of data. With the dramatic increase on the scale of datasets collected and stored with cloud services in recent years, it takes more computation power for mining process in the cloud. Amount of work also transferred the approximate mining computation into the exact computation, where such methods not improve the accuracy also not enhance the efficiency. The proposed algorithm uses Hadoop distributed file server for frequent pattern mining. The Hadoop distributed file server improves the performance of the system. The Iterative apriori algorithm can be used to extract the frequent pattern from the dataset. In this approach, candidate itemsets are extracted from the initial dataset. The candidate itemsets are generated from the previous iteration. The support count is calculated for each candidate itemset. The support value is the frequency of items. The confidence value should be calculated for finding the dependency between itemsets. The threshold value is calculated and based on this value pruning is performed." @default.
- W2886026853 created "2018-08-22" @default.
- W2886026853 creator A5043759724 @default.
- W2886026853 date "2018-05-28" @default.
- W2886026853 modified "2023-09-23" @default.
- W2886026853 title "Frequent pattern mining on big data using Apriori algorithm" @default.
- W2886026853 hasPublicationYear "2018" @default.
- W2886026853 type Work @default.
- W2886026853 sameAs 2886026853 @default.
- W2886026853 citedByCount "1" @default.
- W2886026853 countsByYear W28860268532021 @default.
- W2886026853 crossrefType "journal-article" @default.
- W2886026853 hasAuthorship W2886026853A5043759724 @default.
- W2886026853 hasConcept C108010975 @default.
- W2886026853 hasConcept C111472728 @default.
- W2886026853 hasConcept C111919701 @default.
- W2886026853 hasConcept C11413529 @default.
- W2886026853 hasConcept C124101348 @default.
- W2886026853 hasConcept C132964779 @default.
- W2886026853 hasConcept C138885662 @default.
- W2886026853 hasConcept C193524817 @default.
- W2886026853 hasConcept C199360897 @default.
- W2886026853 hasConcept C41008148 @default.
- W2886026853 hasConcept C45374587 @default.
- W2886026853 hasConcept C6557445 @default.
- W2886026853 hasConcept C75553542 @default.
- W2886026853 hasConcept C75684735 @default.
- W2886026853 hasConcept C79974875 @default.
- W2886026853 hasConcept C81440476 @default.
- W2886026853 hasConcept C86803240 @default.
- W2886026853 hasConceptScore W2886026853C108010975 @default.
- W2886026853 hasConceptScore W2886026853C111472728 @default.
- W2886026853 hasConceptScore W2886026853C111919701 @default.
- W2886026853 hasConceptScore W2886026853C11413529 @default.
- W2886026853 hasConceptScore W2886026853C124101348 @default.
- W2886026853 hasConceptScore W2886026853C132964779 @default.
- W2886026853 hasConceptScore W2886026853C138885662 @default.
- W2886026853 hasConceptScore W2886026853C193524817 @default.
- W2886026853 hasConceptScore W2886026853C199360897 @default.
- W2886026853 hasConceptScore W2886026853C41008148 @default.
- W2886026853 hasConceptScore W2886026853C45374587 @default.
- W2886026853 hasConceptScore W2886026853C6557445 @default.
- W2886026853 hasConceptScore W2886026853C75553542 @default.
- W2886026853 hasConceptScore W2886026853C75684735 @default.
- W2886026853 hasConceptScore W2886026853C79974875 @default.
- W2886026853 hasConceptScore W2886026853C81440476 @default.
- W2886026853 hasConceptScore W2886026853C86803240 @default.
- W2886026853 hasIssue "5" @default.
- W2886026853 hasLocation W28860268531 @default.
- W2886026853 hasOpenAccess W2886026853 @default.
- W2886026853 hasPrimaryLocation W28860268531 @default.
- W2886026853 hasRelatedWork W2053171998 @default.
- W2886026853 hasRelatedWork W2132709901 @default.
- W2886026853 hasRelatedWork W2162471503 @default.
- W2886026853 hasRelatedWork W2186420349 @default.
- W2886026853 hasRelatedWork W2314236969 @default.
- W2886026853 hasRelatedWork W2320617691 @default.
- W2886026853 hasRelatedWork W2374383233 @default.
- W2886026853 hasRelatedWork W2559887008 @default.
- W2886026853 hasRelatedWork W2580282500 @default.
- W2886026853 hasRelatedWork W2606939177 @default.
- W2886026853 hasRelatedWork W2765102830 @default.
- W2886026853 hasRelatedWork W2810043671 @default.
- W2886026853 hasRelatedWork W2886707573 @default.
- W2886026853 hasRelatedWork W3015513889 @default.
- W2886026853 hasRelatedWork W3046856743 @default.
- W2886026853 hasRelatedWork W3089608951 @default.
- W2886026853 hasRelatedWork W3213232235 @default.
- W2886026853 hasRelatedWork W634978463 @default.
- W2886026853 hasRelatedWork W798265097 @default.
- W2886026853 hasRelatedWork W2563888451 @default.
- W2886026853 hasVolume "3" @default.
- W2886026853 isParatext "false" @default.
- W2886026853 isRetracted "false" @default.
- W2886026853 magId "2886026853" @default.
- W2886026853 workType "article" @default.