Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886116972> ?p ?o ?g. }
- W2886116972 endingPage "420" @default.
- W2886116972 startingPage "409" @default.
- W2886116972 abstract "In this study, we present a novel procedure to simulate the velocity distribution of a narrow sewer channel using a combination of a simple and accurate machine learning tool, namely, extreme learning machine (ELM). We also examined the uncertainty associated with the model in simulating the more complex velocity–depth profiles in narrow sewer channels using the 95 percent predicted uncertainties (95PPU%) and d-factor indices. The data for estimating the velocity distribution were measured at a municipal sewer pipe in France. We measured the velocity distribution in a cross section for 10 different depths with width-to-depth ratios ranging from 1.75 to 2.44. The new ELM model has the 95PPU% and the d-factor of 53.25% and 0.36, respectively, in the training dataset and 84.93% and 1.9 in the test dataset. The error analysis confirmed that ELM model outperforms all existing models for predicting velocity profile in narrow sewers. The proposed method is compared with existing methods, and it appears that in addition to being simpler and having no limitations, this model exhibits better performance as well (root mean square error (RMSE) = 0.04 and mean absolute percentage error (MAPE) = 3.56%)." @default.
- W2886116972 created "2018-08-22" @default.
- W2886116972 creator A5007701856 @default.
- W2886116972 creator A5044694185 @default.
- W2886116972 creator A5066692423 @default.
- W2886116972 creator A5086247042 @default.
- W2886116972 date "2018-08-05" @default.
- W2886116972 modified "2023-10-17" @default.
- W2886116972 title "More accurate prediction of the complex velocity field in sewers based on uncertainty analysis using extreme learning machine technique" @default.
- W2886116972 cites W1545106967 @default.
- W2886116972 cites W1968372207 @default.
- W2886116972 cites W1975535452 @default.
- W2886116972 cites W1982350778 @default.
- W2886116972 cites W1985801505 @default.
- W2886116972 cites W1997070165 @default.
- W2886116972 cites W2002349830 @default.
- W2886116972 cites W2005222623 @default.
- W2886116972 cites W2005398931 @default.
- W2886116972 cites W2013550583 @default.
- W2886116972 cites W2026131661 @default.
- W2886116972 cites W2034420071 @default.
- W2886116972 cites W2040382640 @default.
- W2886116972 cites W2052826624 @default.
- W2886116972 cites W2056575044 @default.
- W2886116972 cites W2067467007 @default.
- W2886116972 cites W2067738886 @default.
- W2886116972 cites W2074496423 @default.
- W2886116972 cites W2077040126 @default.
- W2886116972 cites W2077901191 @default.
- W2886116972 cites W2081663888 @default.
- W2886116972 cites W2089983649 @default.
- W2886116972 cites W2093052328 @default.
- W2886116972 cites W2095946899 @default.
- W2886116972 cites W2110141156 @default.
- W2886116972 cites W2111072639 @default.
- W2886116972 cites W2112885771 @default.
- W2886116972 cites W2128003492 @default.
- W2886116972 cites W2313350192 @default.
- W2886116972 cites W2321974702 @default.
- W2886116972 cites W2325165502 @default.
- W2886116972 cites W2561439540 @default.
- W2886116972 cites W2588898025 @default.
- W2886116972 cites W2607097720 @default.
- W2886116972 cites W2614970054 @default.
- W2886116972 cites W2767523907 @default.
- W2886116972 cites W2767589907 @default.
- W2886116972 cites W2770447130 @default.
- W2886116972 cites W2784239585 @default.
- W2886116972 cites W4231653406 @default.
- W2886116972 cites W4237691357 @default.
- W2886116972 doi "https://doi.org/10.1080/09715010.2018.1498753" @default.
- W2886116972 hasPublicationYear "2018" @default.
- W2886116972 type Work @default.
- W2886116972 sameAs 2886116972 @default.
- W2886116972 citedByCount "5" @default.
- W2886116972 countsByYear W28861169722020 @default.
- W2886116972 countsByYear W28861169722021 @default.
- W2886116972 countsByYear W28861169722022 @default.
- W2886116972 countsByYear W28861169722023 @default.
- W2886116972 crossrefType "journal-article" @default.
- W2886116972 hasAuthorship W2886116972A5007701856 @default.
- W2886116972 hasAuthorship W2886116972A5044694185 @default.
- W2886116972 hasAuthorship W2886116972A5066692423 @default.
- W2886116972 hasAuthorship W2886116972A5086247042 @default.
- W2886116972 hasConcept C105795698 @default.
- W2886116972 hasConcept C127413603 @default.
- W2886116972 hasConcept C139945424 @default.
- W2886116972 hasConcept C150217764 @default.
- W2886116972 hasConcept C154945302 @default.
- W2886116972 hasConcept C190714865 @default.
- W2886116972 hasConcept C202444582 @default.
- W2886116972 hasConcept C2780150128 @default.
- W2886116972 hasConcept C33923547 @default.
- W2886116972 hasConcept C41008148 @default.
- W2886116972 hasConcept C50644808 @default.
- W2886116972 hasConcept C548081761 @default.
- W2886116972 hasConcept C9652623 @default.
- W2886116972 hasConceptScore W2886116972C105795698 @default.
- W2886116972 hasConceptScore W2886116972C127413603 @default.
- W2886116972 hasConceptScore W2886116972C139945424 @default.
- W2886116972 hasConceptScore W2886116972C150217764 @default.
- W2886116972 hasConceptScore W2886116972C154945302 @default.
- W2886116972 hasConceptScore W2886116972C190714865 @default.
- W2886116972 hasConceptScore W2886116972C202444582 @default.
- W2886116972 hasConceptScore W2886116972C2780150128 @default.
- W2886116972 hasConceptScore W2886116972C33923547 @default.
- W2886116972 hasConceptScore W2886116972C41008148 @default.
- W2886116972 hasConceptScore W2886116972C50644808 @default.
- W2886116972 hasConceptScore W2886116972C548081761 @default.
- W2886116972 hasConceptScore W2886116972C9652623 @default.
- W2886116972 hasIssue "4" @default.
- W2886116972 hasLocation W28861169721 @default.
- W2886116972 hasOpenAccess W2886116972 @default.
- W2886116972 hasPrimaryLocation W28861169721 @default.
- W2886116972 hasRelatedWork W2111480483 @default.
- W2886116972 hasRelatedWork W2625413331 @default.
- W2886116972 hasRelatedWork W2893898383 @default.
- W2886116972 hasRelatedWork W2907620442 @default.