Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886281023> ?p ?o ?g. }
- W2886281023 endingPage "413" @default.
- W2886281023 startingPage "396" @default.
- W2886281023 abstract "Thirteen austenitic stainless steels, nickel-base alloys, and ferritic alloys were irradiated using 2 MeV protons at 360 °C to a damage level of 2.5 displacements per atom (dpa). Comprehensive microstructural characterization was performed for irradiation-induced features, including dislocation loops, voids, precipitates, and radiation induced segregation (RIS). Dislocation loops formed in all alloys except 14YWT, while voids were observed in alloys 316 L, 310, C22, and 14YWT. Irradiation-induced formation of γ′ precipitates was observed in alloys 316 L, 310, 800, and 690; the irradiation-enhanced, long-range ordered Ni2Cr phase (Pt2Mo-type) was observed in alloys 690, C22, 625, 625Plus, 625DA, and 725; and G-phase was observed in alloy T92. No irradiation-induced precipitates were observed in alloys X750, 718 or 14YWT. Precipitation of the γ′ phase can be understood through segregation and clustering of Si, Al, and Ti. Overall, austenitic stainless steels are generally susceptible to irradiation damage in the form of loops, voids, precipitates, and RIS. Ni-base alloys have this same type of dislocation loops and RIS behaviors but are more resistant to void swelling. Ferritic alloys showed better resistance to loop formation, void swelling and irradiation-induced precipitation. From the degree of irradiation-induced microstructural change, alloy T92 was identified as the most radiation resistant among these alloys." @default.
- W2886281023 created "2018-08-22" @default.
- W2886281023 creator A5035858494 @default.
- W2886281023 creator A5045852286 @default.
- W2886281023 creator A5057655294 @default.
- W2886281023 creator A5070109882 @default.
- W2886281023 creator A5089757933 @default.
- W2886281023 date "2018-11-01" @default.
- W2886281023 modified "2023-10-16" @default.
- W2886281023 title "Radiation tolerance of commercial and advanced alloys for core internals: a comprehensive microstructural characterization" @default.
- W2886281023 cites W1111131364 @default.
- W2886281023 cites W1197268012 @default.
- W2886281023 cites W1879392776 @default.
- W2886281023 cites W1963962856 @default.
- W2886281023 cites W1965546836 @default.
- W2886281023 cites W1965597776 @default.
- W2886281023 cites W1968909116 @default.
- W2886281023 cites W1978693663 @default.
- W2886281023 cites W1984247453 @default.
- W2886281023 cites W1986128084 @default.
- W2886281023 cites W1986483276 @default.
- W2886281023 cites W1994646802 @default.
- W2886281023 cites W1999337459 @default.
- W2886281023 cites W2001746502 @default.
- W2886281023 cites W2002287855 @default.
- W2886281023 cites W2009653552 @default.
- W2886281023 cites W2010586443 @default.
- W2886281023 cites W2011675493 @default.
- W2886281023 cites W2014462128 @default.
- W2886281023 cites W2018294536 @default.
- W2886281023 cites W2028419151 @default.
- W2886281023 cites W2030707636 @default.
- W2886281023 cites W2040044084 @default.
- W2886281023 cites W2041715255 @default.
- W2886281023 cites W2041753977 @default.
- W2886281023 cites W2041948374 @default.
- W2886281023 cites W2044647770 @default.
- W2886281023 cites W2046361388 @default.
- W2886281023 cites W2055674846 @default.
- W2886281023 cites W2056228148 @default.
- W2886281023 cites W2059988729 @default.
- W2886281023 cites W2060993271 @default.
- W2886281023 cites W2061899458 @default.
- W2886281023 cites W2063210077 @default.
- W2886281023 cites W2065769169 @default.
- W2886281023 cites W2066903770 @default.
- W2886281023 cites W2067326179 @default.
- W2886281023 cites W2069630276 @default.
- W2886281023 cites W2072024713 @default.
- W2886281023 cites W2075816187 @default.
- W2886281023 cites W2083082818 @default.
- W2886281023 cites W2083672906 @default.
- W2886281023 cites W2083888936 @default.
- W2886281023 cites W2084143431 @default.
- W2886281023 cites W2085416545 @default.
- W2886281023 cites W2085876834 @default.
- W2886281023 cites W2088027483 @default.
- W2886281023 cites W2089031539 @default.
- W2886281023 cites W2089760118 @default.
- W2886281023 cites W2091930771 @default.
- W2886281023 cites W2155846128 @default.
- W2886281023 cites W2170575050 @default.
- W2886281023 cites W2287305874 @default.
- W2886281023 cites W2345916806 @default.
- W2886281023 cites W2560571970 @default.
- W2886281023 cites W2593711696 @default.
- W2886281023 cites W2609797543 @default.
- W2886281023 cites W2619220427 @default.
- W2886281023 cites W2761976424 @default.
- W2886281023 cites W2783322116 @default.
- W2886281023 cites W2790900740 @default.
- W2886281023 cites W2810602503 @default.
- W2886281023 cites W35867121 @default.
- W2886281023 cites W610279516 @default.
- W2886281023 doi "https://doi.org/10.1016/j.jnucmat.2018.08.035" @default.
- W2886281023 hasPublicationYear "2018" @default.
- W2886281023 type Work @default.
- W2886281023 sameAs 2886281023 @default.
- W2886281023 citedByCount "22" @default.
- W2886281023 countsByYear W28862810232019 @default.
- W2886281023 countsByYear W28862810232020 @default.
- W2886281023 countsByYear W28862810232021 @default.
- W2886281023 countsByYear W28862810232022 @default.
- W2886281023 countsByYear W28862810232023 @default.
- W2886281023 crossrefType "journal-article" @default.
- W2886281023 hasAuthorship W2886281023A5035858494 @default.
- W2886281023 hasAuthorship W2886281023A5045852286 @default.
- W2886281023 hasAuthorship W2886281023A5057655294 @default.
- W2886281023 hasAuthorship W2886281023A5070109882 @default.
- W2886281023 hasAuthorship W2886281023A5089757933 @default.
- W2886281023 hasBestOaLocation W28862810231 @default.
- W2886281023 hasConcept C107054158 @default.
- W2886281023 hasConcept C111337013 @default.
- W2886281023 hasConcept C121332964 @default.
- W2886281023 hasConcept C153294291 @default.
- W2886281023 hasConcept C159122135 @default.
- W2886281023 hasConcept C159985019 @default.
- W2886281023 hasConcept C16876290 @default.