Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886304875> ?p ?o ?g. }
- W2886304875 endingPage "153601211878931" @default.
- W2886304875 startingPage "153601211878931" @default.
- W2886304875 abstract "Purpose: Prostate imaging is a major application of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI). Currently, MRI-based attenuation correction (MRAC) for whole-body PET/MRI in which the bony structures are ignored is the main obstacle to successful implementation of the hybrid modality in the clinical work flow. Ultrashort echo time sequence captures bone signal but needs specific hardware–software and is challenging in large field of view (FOV) regions, such as pelvis. The main aims of the work are (1) to capture a part of the bone signal in pelvis using short echo time (STE) imaging based on time-resolved angiography with interleaved stochastic trajectories (TWIST) sequence and (2) to consider the bone in pelvis attenuation map (µ-map) to MRAC for PET/MRI systems. Procedures: Time-resolved angiography with interleaved stochastic trajectories, which is routinely used for MR angiography with high temporal and spatial resolution, was employed for fast/STE MR imaging. Data acquisition was performed in a TE of 0.88 milliseconds (STE) and 4.86 milliseconds (long echo time [LTE]) in pelvis region. Region of interest (ROI)-based analysis was used for comparing the signal-to-noise ratio (SNR) of cortical bone in STE and LTE images. A hybrid segmentation protocol, which is comprised of image subtraction, a Fuzzy-based segmentation, and a dedicated morphologic operation, was used for generating a 5-class µ-map consisting of cortical bone, air cavity, fat, soft tissue, and background (µ-map MR-5c ). A MR-based 4-class µ-map (µ-map MR-4c ) that considered soft tissue rather than bone was generated. As such, a bilinear (µ-map CT-ref ), 5 (µ-map CT-5c ), and 4 class µ-map (µ-map CT-4c ) based on computed tomography (CT) images were generated. Finally, simulated PET data were corrected using µ-map MR-5c (PET-MRAC5c), µ-map MR-4c (PET-MRAC4c), µ-map CT-5c (PET-CTAC5c), and µ-map CT-ref (PET-CTAC). Results: The ratio of SNR bone to SNR air cavity in LTE images was 0.8, this factor was increased to 4.4 in STE images. The Dice, Sensitivity, and Accuracy metrics for bone segmentation in proposed method were 72.4% ± 5.5%, 69.6% ± 7.5%, and 96.5% ± 3.5%, respectively, where the segmented CT served as reference. The mean relative error in bone regions in the simulated PET images were −13.98% ± 15%, −35.59% ± 15.41%, and 1.81% ± 12.2%, respectively, in PET-MRAC5c, PET-MRAC4c, and PET-CTAC5c where PET-CTAC served as the reference. Despite poor correlation in the joint histogram of µ-map MR-4c versus µ-map CT-5c (R 2 > 0.78) and PET-MRAC4c versus PET-CTAC5c (R 2 = 0.83), high correlations were observed in µ-map MR-5c versus µ-map CT-5c (R 2 > 0.94) and PET-MRAC5c versus PET-CTAC5c (R 2 > 0.96). Conclusions: According to the SNR STE, pelvic bone , the cortical bone can be separate from air cavity in STE imaging based on TWIST sequence. The proposed method generated an MRI-based µ-map containing bone and air cavity that led to more accurate tracer uptake estimation than MRAC4c. Uptake estimation in hybrid PET/MRI can be improved by employing the proposed method." @default.
- W2886304875 created "2018-08-22" @default.
- W2886304875 creator A5002606129 @default.
- W2886304875 creator A5024645380 @default.
- W2886304875 creator A5060374126 @default.
- W2886304875 creator A5062701361 @default.
- W2886304875 creator A5066818317 @default.
- W2886304875 date "2018-01-01" @default.
- W2886304875 modified "2023-10-03" @default.
- W2886304875 title "Capturing Bone Signal in MRI of Pelvis, as a Large FOV Region, Using TWIST Sequence and Generating a 5-Class Attenuation Map for Prostate PET/MRI Imaging" @default.
- W2886304875 cites W1934517153 @default.
- W2886304875 cites W1966456712 @default.
- W2886304875 cites W1971355095 @default.
- W2886304875 cites W1973880112 @default.
- W2886304875 cites W1994487608 @default.
- W2886304875 cites W1998729887 @default.
- W2886304875 cites W2002786571 @default.
- W2886304875 cites W2005101545 @default.
- W2886304875 cites W2034675639 @default.
- W2886304875 cites W2035939985 @default.
- W2886304875 cites W2037425560 @default.
- W2886304875 cites W2043626403 @default.
- W2886304875 cites W2058024426 @default.
- W2886304875 cites W2060504831 @default.
- W2886304875 cites W2064276185 @default.
- W2886304875 cites W2067324127 @default.
- W2886304875 cites W2069090100 @default.
- W2886304875 cites W2069872397 @default.
- W2886304875 cites W2071104219 @default.
- W2886304875 cites W2072192365 @default.
- W2886304875 cites W2079070412 @default.
- W2886304875 cites W2080500950 @default.
- W2886304875 cites W2082359281 @default.
- W2886304875 cites W2100495482 @default.
- W2886304875 cites W2110966329 @default.
- W2886304875 cites W2133287637 @default.
- W2886304875 cites W2142082007 @default.
- W2886304875 cites W2142664943 @default.
- W2886304875 cites W2158074257 @default.
- W2886304875 cites W2167157872 @default.
- W2886304875 cites W2171679699 @default.
- W2886304875 cites W2173241347 @default.
- W2886304875 cites W2211978907 @default.
- W2886304875 cites W2276599903 @default.
- W2886304875 cites W2467603620 @default.
- W2886304875 cites W2524378621 @default.
- W2886304875 cites W2582833977 @default.
- W2886304875 cites W2754132686 @default.
- W2886304875 cites W2765429622 @default.
- W2886304875 cites W2788611845 @default.
- W2886304875 doi "https://doi.org/10.1177/1536012118789314" @default.
- W2886304875 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6071149" @default.
- W2886304875 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30064303" @default.
- W2886304875 hasPublicationYear "2018" @default.
- W2886304875 type Work @default.
- W2886304875 sameAs 2886304875 @default.
- W2886304875 citedByCount "4" @default.
- W2886304875 countsByYear W28863048752019 @default.
- W2886304875 countsByYear W28863048752020 @default.
- W2886304875 countsByYear W28863048752021 @default.
- W2886304875 countsByYear W28863048752023 @default.
- W2886304875 crossrefType "journal-article" @default.
- W2886304875 hasAuthorship W2886304875A5002606129 @default.
- W2886304875 hasAuthorship W2886304875A5024645380 @default.
- W2886304875 hasAuthorship W2886304875A5060374126 @default.
- W2886304875 hasAuthorship W2886304875A5062701361 @default.
- W2886304875 hasAuthorship W2886304875A5066818317 @default.
- W2886304875 hasBestOaLocation W28863048751 @default.
- W2886304875 hasConcept C123688308 @default.
- W2886304875 hasConcept C126838900 @default.
- W2886304875 hasConcept C143409427 @default.
- W2886304875 hasConcept C2775842073 @default.
- W2886304875 hasConcept C31972630 @default.
- W2886304875 hasConcept C41008148 @default.
- W2886304875 hasConcept C71924100 @default.
- W2886304875 hasConcept C89600930 @default.
- W2886304875 hasConceptScore W2886304875C123688308 @default.
- W2886304875 hasConceptScore W2886304875C126838900 @default.
- W2886304875 hasConceptScore W2886304875C143409427 @default.
- W2886304875 hasConceptScore W2886304875C2775842073 @default.
- W2886304875 hasConceptScore W2886304875C31972630 @default.
- W2886304875 hasConceptScore W2886304875C41008148 @default.
- W2886304875 hasConceptScore W2886304875C71924100 @default.
- W2886304875 hasConceptScore W2886304875C89600930 @default.
- W2886304875 hasLocation W28863048751 @default.
- W2886304875 hasLocation W28863048752 @default.
- W2886304875 hasLocation W28863048753 @default.
- W2886304875 hasLocation W28863048754 @default.
- W2886304875 hasOpenAccess W2886304875 @default.
- W2886304875 hasPrimaryLocation W28863048751 @default.
- W2886304875 hasRelatedWork W1972093569 @default.
- W2886304875 hasRelatedWork W2068541478 @default.
- W2886304875 hasRelatedWork W2073690763 @default.
- W2886304875 hasRelatedWork W2077596487 @default.
- W2886304875 hasRelatedWork W2133538145 @default.
- W2886304875 hasRelatedWork W2358941527 @default.
- W2886304875 hasRelatedWork W2394484954 @default.
- W2886304875 hasRelatedWork W2416642399 @default.