Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886334544> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2886334544 endingPage "43884" @default.
- W2886334544 startingPage "43874" @default.
- W2886334544 abstract "In this paper, to solve the problem of the low recognition rate of the existing approaches at low signal-to-noise ratio (SNR), an intra-pulse modulation recognition approach for radar signal is proposed. The approach identifies the modulation of radar signals using the techniques of time-frequency analysis, image processing, and convolutional neural network (CNN). Through Cohen class time-frequency distribution (CTFD), the time-frequency images (TFIs) of received signals are extracted. In order to obtain the high-quality TFIs of received signals, we introduce a new kernel function for the CTFD, which has stronger anti-noise ability than Choi-Williams time-frequency distribution. A series of image processing techniques, including 2-D Wiener filtering, bilinear interpolation, and Otsu method, are applied to remove the background noise of the TFI and obtain a fixed-size binary image that contains only morphological features of the TFI. We design a CNN classifier to identify the processed TFIs. The proposed approach can identify up to 12 kinds of modulation signals, including frequency modulation, phase modulation, and composite modulation. Simulation results show that, for 12 kinds of modulation signals, the proposed approach achieves an overall probability of successful recognition of 96.1% when SNR is -6 dB." @default.
- W2886334544 created "2018-08-22" @default.
- W2886334544 creator A5065011438 @default.
- W2886334544 creator A5087219991 @default.
- W2886334544 creator A5087329042 @default.
- W2886334544 date "2018-01-01" @default.
- W2886334544 modified "2023-10-15" @default.
- W2886334544 title "Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Neural Network" @default.
- W2886334544 cites W1536680647 @default.
- W2886334544 cites W1934410531 @default.
- W2886334544 cites W1978075687 @default.
- W2886334544 cites W1985437849 @default.
- W2886334544 cites W2027307733 @default.
- W2886334544 cites W2096092115 @default.
- W2886334544 cites W2104548632 @default.
- W2886334544 cites W2105502366 @default.
- W2886334544 cites W2117849406 @default.
- W2886334544 cites W2133059825 @default.
- W2886334544 cites W2136280601 @default.
- W2886334544 cites W2147735901 @default.
- W2886334544 cites W2153816607 @default.
- W2886334544 cites W2164677902 @default.
- W2886334544 cites W2165878107 @default.
- W2886334544 cites W2284339649 @default.
- W2886334544 cites W2531162019 @default.
- W2886334544 cites W2586095846 @default.
- W2886334544 cites W2591398516 @default.
- W2886334544 cites W2591880439 @default.
- W2886334544 cites W2624887404 @default.
- W2886334544 cites W2758593264 @default.
- W2886334544 doi "https://doi.org/10.1109/access.2018.2864347" @default.
- W2886334544 hasPublicationYear "2018" @default.
- W2886334544 type Work @default.
- W2886334544 sameAs 2886334544 @default.
- W2886334544 citedByCount "55" @default.
- W2886334544 countsByYear W28863345442019 @default.
- W2886334544 countsByYear W28863345442020 @default.
- W2886334544 countsByYear W28863345442021 @default.
- W2886334544 countsByYear W28863345442022 @default.
- W2886334544 countsByYear W28863345442023 @default.
- W2886334544 crossrefType "journal-article" @default.
- W2886334544 hasAuthorship W2886334544A5065011438 @default.
- W2886334544 hasAuthorship W2886334544A5087219991 @default.
- W2886334544 hasAuthorship W2886334544A5087329042 @default.
- W2886334544 hasBestOaLocation W28863345441 @default.
- W2886334544 hasConcept C11930861 @default.
- W2886334544 hasConcept C121332964 @default.
- W2886334544 hasConcept C123079801 @default.
- W2886334544 hasConcept C142433447 @default.
- W2886334544 hasConcept C153180895 @default.
- W2886334544 hasConcept C154945302 @default.
- W2886334544 hasConcept C24890656 @default.
- W2886334544 hasConcept C2776257435 @default.
- W2886334544 hasConcept C28490314 @default.
- W2886334544 hasConcept C41008148 @default.
- W2886334544 hasConcept C554190296 @default.
- W2886334544 hasConcept C76155785 @default.
- W2886334544 hasConcept C81363708 @default.
- W2886334544 hasConceptScore W2886334544C11930861 @default.
- W2886334544 hasConceptScore W2886334544C121332964 @default.
- W2886334544 hasConceptScore W2886334544C123079801 @default.
- W2886334544 hasConceptScore W2886334544C142433447 @default.
- W2886334544 hasConceptScore W2886334544C153180895 @default.
- W2886334544 hasConceptScore W2886334544C154945302 @default.
- W2886334544 hasConceptScore W2886334544C24890656 @default.
- W2886334544 hasConceptScore W2886334544C2776257435 @default.
- W2886334544 hasConceptScore W2886334544C28490314 @default.
- W2886334544 hasConceptScore W2886334544C41008148 @default.
- W2886334544 hasConceptScore W2886334544C554190296 @default.
- W2886334544 hasConceptScore W2886334544C76155785 @default.
- W2886334544 hasConceptScore W2886334544C81363708 @default.
- W2886334544 hasFunder F4320321001 @default.
- W2886334544 hasFunder F4320323085 @default.
- W2886334544 hasFunder F4320335787 @default.
- W2886334544 hasLocation W28863345441 @default.
- W2886334544 hasLocation W28863345442 @default.
- W2886334544 hasOpenAccess W2886334544 @default.
- W2886334544 hasPrimaryLocation W28863345441 @default.
- W2886334544 hasRelatedWork W1506192224 @default.
- W2886334544 hasRelatedWork W2052832853 @default.
- W2886334544 hasRelatedWork W2291690265 @default.
- W2886334544 hasRelatedWork W2437937001 @default.
- W2886334544 hasRelatedWork W2520925370 @default.
- W2886334544 hasRelatedWork W2539825046 @default.
- W2886334544 hasRelatedWork W2767651786 @default.
- W2886334544 hasRelatedWork W2912288872 @default.
- W2886334544 hasRelatedWork W2981807109 @default.
- W2886334544 hasRelatedWork W564581980 @default.
- W2886334544 hasVolume "6" @default.
- W2886334544 isParatext "false" @default.
- W2886334544 isRetracted "false" @default.
- W2886334544 magId "2886334544" @default.
- W2886334544 workType "article" @default.