Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886367621> ?p ?o ?g. }
- W2886367621 abstract "ABSTRACT With advances in Whole Genome Sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and Sequence Kernel Association Test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally-efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-Set Mixed Model Association Tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute’s Trans-Omics for Precision Medicine (TOPMed) program. SMMAT tests share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be only fit once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMAT tests correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform." @default.
- W2886367621 created "2018-08-22" @default.
- W2886367621 creator A5003856334 @default.
- W2886367621 creator A5004538115 @default.
- W2886367621 creator A5004548589 @default.
- W2886367621 creator A5004586541 @default.
- W2886367621 creator A5011015228 @default.
- W2886367621 creator A5011940218 @default.
- W2886367621 creator A5017665414 @default.
- W2886367621 creator A5018495347 @default.
- W2886367621 creator A5022738034 @default.
- W2886367621 creator A5023169260 @default.
- W2886367621 creator A5027947946 @default.
- W2886367621 creator A5028963399 @default.
- W2886367621 creator A5030660111 @default.
- W2886367621 creator A5031305852 @default.
- W2886367621 creator A5035319954 @default.
- W2886367621 creator A5035524361 @default.
- W2886367621 creator A5040770914 @default.
- W2886367621 creator A5042121948 @default.
- W2886367621 creator A5043833054 @default.
- W2886367621 creator A5044048476 @default.
- W2886367621 creator A5047340885 @default.
- W2886367621 creator A5047463043 @default.
- W2886367621 creator A5049355350 @default.
- W2886367621 creator A5050330450 @default.
- W2886367621 creator A5050985673 @default.
- W2886367621 creator A5054782619 @default.
- W2886367621 creator A5056452564 @default.
- W2886367621 creator A5056674934 @default.
- W2886367621 creator A5057135919 @default.
- W2886367621 creator A5057654443 @default.
- W2886367621 creator A5059560495 @default.
- W2886367621 creator A5059921628 @default.
- W2886367621 creator A5060175597 @default.
- W2886367621 creator A5062883630 @default.
- W2886367621 creator A5064545811 @default.
- W2886367621 creator A5066207858 @default.
- W2886367621 creator A5068097338 @default.
- W2886367621 creator A5068555852 @default.
- W2886367621 creator A5070735232 @default.
- W2886367621 creator A5074299304 @default.
- W2886367621 creator A5078166854 @default.
- W2886367621 creator A5079789406 @default.
- W2886367621 creator A5080311961 @default.
- W2886367621 creator A5081885552 @default.
- W2886367621 creator A5086670770 @default.
- W2886367621 creator A5087955884 @default.
- W2886367621 creator A5088365248 @default.
- W2886367621 date "2018-08-20" @default.
- W2886367621 modified "2023-09-30" @default.
- W2886367621 title "Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole genome sequencing studies" @default.
- W2886367621 cites W1934803189 @default.
- W2886367621 cites W1937353909 @default.
- W2886367621 cites W1966775465 @default.
- W2886367621 cites W1971102564 @default.
- W2886367621 cites W1980168725 @default.
- W2886367621 cites W1990430353 @default.
- W2886367621 cites W2003472145 @default.
- W2886367621 cites W2019794729 @default.
- W2886367621 cites W2029387902 @default.
- W2886367621 cites W2048468713 @default.
- W2886367621 cites W2058148991 @default.
- W2886367621 cites W2064273032 @default.
- W2886367621 cites W2079927753 @default.
- W2886367621 cites W2084747252 @default.
- W2886367621 cites W2087936498 @default.
- W2886367621 cites W2088486634 @default.
- W2886367621 cites W2090164184 @default.
- W2886367621 cites W2100909778 @default.
- W2886367621 cites W2114115532 @default.
- W2886367621 cites W2122060560 @default.
- W2886367621 cites W2123725293 @default.
- W2886367621 cites W2127684760 @default.
- W2886367621 cites W2133107210 @default.
- W2886367621 cites W2153899794 @default.
- W2886367621 cites W2160995259 @default.
- W2886367621 cites W2163953557 @default.
- W2886367621 cites W2192043071 @default.
- W2886367621 cites W2225726427 @default.
- W2886367621 cites W2226732401 @default.
- W2886367621 cites W2307506820 @default.
- W2886367621 cites W2522087163 @default.
- W2886367621 cites W2572291320 @default.
- W2886367621 cites W2748535180 @default.
- W2886367621 cites W2751686252 @default.
- W2886367621 cites W2765868800 @default.
- W2886367621 cites W2768789026 @default.
- W2886367621 cites W2802367710 @default.
- W2886367621 cites W2809045255 @default.
- W2886367621 cites W2950099124 @default.
- W2886367621 cites W2950598813 @default.
- W2886367621 cites W2951962793 @default.
- W2886367621 cites W2952535009 @default.
- W2886367621 cites W3102205410 @default.
- W2886367621 cites W4244611409 @default.
- W2886367621 cites W4251083339 @default.
- W2886367621 doi "https://doi.org/10.1101/395046" @default.
- W2886367621 hasPublicationYear "2018" @default.
- W2886367621 type Work @default.