Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886375830> ?p ?o ?g. }
- W2886375830 endingPage "427" @default.
- W2886375830 startingPage "413" @default.
- W2886375830 abstract "AEI Aquaculture Environment Interactions Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections AEI 10:413-427 (2018) - DOI: https://doi.org/10.3354/aei00278 Effects of finfish aquaculture on biogeochemistry and bacterial communities associated with sulfur cycles in highly sulfidic sediments Ayeon Choi1, Hyeyoun Cho1, Bomina Kim1, Hyung Chul Kim2, Rae-Hong Jung2, Won-Chan Lee2, Jung-Ho Hyun1,* 1Department of Marine Science and Convergent Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea 2Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan 619-902, Republic of Korea *Corresponding author: hyunjh@hanyang.ac.kr ABSTRACT: A combination of biogeochemical analyses and molecular microbiological analyses were conducted to assess the environmental impact of finfish aquaculture and to elucidate the major microbial assemblages responsible for the production and removal of reduced sulfur compounds in fish-farm sediments. The average concentrations of H2S (123 µM) and NH4+ (1310 µM) and the dissimilatory sulfite reductase (dsr) gene copy number (1.9 × 109 copies cm-3) in the sediments at the farm site were 15-, 1.5- and 2-fold higher, respectively, than those measured at the less-impacted reference site. Accordingly, the sulfate reduction rate (SRR) at the farm site (118 mmol m-2 d-1) was 19-fold higher than that measured at the reference site (6.2 mmol m-2 d-1). Analyses of dsrA and 16S rRNA gene sequences revealed that the Syntrophobacteraceae and Desulfobulbaceae groups are the major sulfate-reducing bacteria around the fish-farm sediment. Interestingly, despite the high SRR (12.2-19.6 mmol m-2 d-1), the H2S concentration was low (<8 µM) in the top 0-2 cm of the fish-farm sediments. In this sulfide-mismatched zone, sulfur-oxidizing bacteria associated with Gamma- and Epsilonproteobacteria were abundant. Especially at the 1-2 cm depth, bacteria related to Sulfurovum in the Epsilonproteobacteria showed the highest relative abundance, comprising 62% of the 16S rDNA sequences. The results strongly suggest that Sulfurovum-like bacteria play a significant ecological and biogeochemical role in oxidation and reduction of reduced sulfur compounds from the organic-rich, highly sulfidic fish-farm sediments. KEY WORDS: Aquaculture impacts · Benthic metabolism · Sulphidic environment · Sulfate reduction · Sulfate-reducing bacteria · Sulfur-oxidizing bacteria · Sulfurovum Full text in pdf format Supplementary material PreviousNextCite this article as: Choi A, Cho H, Kim B, Kim HC, Jung RH, Lee WC, Hyun JH (2018) Effects of finfish aquaculture on biogeochemistry and bacterial communities associated with sulfur cycles in highly sulfidic sediments. Aquacult Environ Interact 10:413-427. https://doi.org/10.3354/aei00278 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in AEI Vol. 10. Online publication date: September 27, 2018 Print ISSN: 1869-215X; Online ISSN: 1869-7534 Copyright © 2018 Inter-Research." @default.
- W2886375830 created "2018-08-22" @default.
- W2886375830 creator A5000737372 @default.
- W2886375830 creator A5022487559 @default.
- W2886375830 creator A5033845712 @default.
- W2886375830 creator A5036111986 @default.
- W2886375830 creator A5061980716 @default.
- W2886375830 creator A5062016087 @default.
- W2886375830 creator A5088503649 @default.
- W2886375830 date "2018-09-27" @default.
- W2886375830 modified "2023-10-11" @default.
- W2886375830 title "Effects of finfish aquaculture on biogeochemistry and bacterial communities associated with sulfur cycles in highly sulfidic sediments" @default.
- W2886375830 cites W1523989687 @default.
- W2886375830 cites W1586239332 @default.
- W2886375830 cites W1608826479 @default.
- W2886375830 cites W1641759413 @default.
- W2886375830 cites W17097391 @default.
- W2886375830 cites W1876481712 @default.
- W2886375830 cites W1932181819 @default.
- W2886375830 cites W1932360174 @default.
- W2886375830 cites W1967229365 @default.
- W2886375830 cites W1967448163 @default.
- W2886375830 cites W1971691934 @default.
- W2886375830 cites W1972206558 @default.
- W2886375830 cites W1974601738 @default.
- W2886375830 cites W1983192311 @default.
- W2886375830 cites W1983408017 @default.
- W2886375830 cites W1987658523 @default.
- W2886375830 cites W1990004173 @default.
- W2886375830 cites W1997444952 @default.
- W2886375830 cites W2002338106 @default.
- W2886375830 cites W2003017154 @default.
- W2886375830 cites W2005845444 @default.
- W2886375830 cites W2010576487 @default.
- W2886375830 cites W2011235645 @default.
- W2886375830 cites W2013376381 @default.
- W2886375830 cites W2017290612 @default.
- W2886375830 cites W2020450293 @default.
- W2886375830 cites W2028252896 @default.
- W2886375830 cites W2031748911 @default.
- W2886375830 cites W2037190201 @default.
- W2886375830 cites W2038940106 @default.
- W2886375830 cites W2042409053 @default.
- W2886375830 cites W2045921420 @default.
- W2886375830 cites W2054645658 @default.
- W2886375830 cites W2056392157 @default.
- W2886375830 cites W2058330428 @default.
- W2886375830 cites W2060998615 @default.
- W2886375830 cites W2066592789 @default.
- W2886375830 cites W2071128938 @default.
- W2886375830 cites W2073920551 @default.
- W2886375830 cites W2079474932 @default.
- W2886375830 cites W2091913250 @default.
- W2886375830 cites W2093665909 @default.
- W2886375830 cites W2095242207 @default.
- W2886375830 cites W2102183229 @default.
- W2886375830 cites W2106188171 @default.
- W2886375830 cites W2106387136 @default.
- W2886375830 cites W2108182164 @default.
- W2886375830 cites W2108718991 @default.
- W2886375830 cites W2109103681 @default.
- W2886375830 cites W2112491075 @default.
- W2886375830 cites W2115644431 @default.
- W2886375830 cites W2117565782 @default.
- W2886375830 cites W2134928000 @default.
- W2886375830 cites W2139222692 @default.
- W2886375830 cites W2142462683 @default.
- W2886375830 cites W2144974336 @default.
- W2886375830 cites W2151805764 @default.
- W2886375830 cites W2158570900 @default.
- W2886375830 cites W2163747787 @default.
- W2886375830 cites W2170052798 @default.
- W2886375830 cites W2344376072 @default.
- W2886375830 cites W2399087761 @default.
- W2886375830 cites W2463615441 @default.
- W2886375830 cites W2495338708 @default.
- W2886375830 cites W2584021695 @default.
- W2886375830 cites W4247524021 @default.
- W2886375830 doi "https://doi.org/10.3354/aei00278" @default.
- W2886375830 hasPublicationYear "2018" @default.
- W2886375830 type Work @default.
- W2886375830 sameAs 2886375830 @default.
- W2886375830 citedByCount "19" @default.
- W2886375830 countsByYear W28863758302019 @default.
- W2886375830 countsByYear W28863758302020 @default.
- W2886375830 countsByYear W28863758302021 @default.
- W2886375830 countsByYear W28863758302022 @default.
- W2886375830 countsByYear W28863758302023 @default.
- W2886375830 crossrefType "journal-article" @default.
- W2886375830 hasAuthorship W2886375830A5000737372 @default.
- W2886375830 hasAuthorship W2886375830A5022487559 @default.
- W2886375830 hasAuthorship W2886375830A5033845712 @default.
- W2886375830 hasAuthorship W2886375830A5036111986 @default.
- W2886375830 hasAuthorship W2886375830A5061980716 @default.
- W2886375830 hasAuthorship W2886375830A5062016087 @default.
- W2886375830 hasAuthorship W2886375830A5088503649 @default.
- W2886375830 hasBestOaLocation W28863758301 @default.
- W2886375830 hasConcept C107872376 @default.