Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886392285> ?p ?o ?g. }
- W2886392285 endingPage "1308" @default.
- W2886392285 startingPage "1301" @default.
- W2886392285 abstract "Soil spatial information is increasingly sought after for various agricultural, environmental and developmental uses, but is often unavailable, also in southern Africa. Digital soil mapping (DSM) can provide the tools to fill this gap, but the uptake in developing countries have been slow. Local research is required to adapt internationally developed methodologies to unique local situations. In southern Africa DSM research have reached the level where DSM tools can now be used in commercial soil related projects. Several DSM case studies, conducted across Southern Africa, have provided the platform from which this work is presented. These case studies were done for a range of situations, including environmental settings with variations, size, data availability and aim of the soil map. Three different approaches have been identified as useful DSM tools, with varying costs and level of information it provides. Land type disaggregation is the cheapest, as it is largely desktop based, but can only produce small scale soil association maps. The expert knowledge approach is the most widely used commercially. Large scale soil associations can be mapped, and 30 soil observations per homogeneous soil distribution area are required. Machine learning methods can map soil properties, but rely on large data sources, consequently it is the costliest. Machine learning is therefore used to produce large scale maps large areas, where cost can be diluted. This paper gives an outline of DSM research in southern Africa and presents a case study of each of the DSM approaches, showing the methodology, potential and limitations of the approach within a commercial context. Specific case studies presented in this paper include the agricultural assessment of 166 km of pipeline for a water distribution project in Limpopo (land type disaggregation), a land capability assessment of a 15,000 ha open coal mining area in Mozambique (expert knowledge) and hydropedological mapping in Johannesburg (machine learning)." @default.
- W2886392285 created "2018-08-22" @default.
- W2886392285 creator A5057878620 @default.
- W2886392285 date "2019-03-01" @default.
- W2886392285 modified "2023-10-16" @default.
- W2886392285 title "Digital soil mapping approaches to address real world problems in southern Africa" @default.
- W2886392285 cites W1891744174 @default.
- W2886392285 cites W1903841482 @default.
- W2886392285 cites W1974593722 @default.
- W2886392285 cites W1975337890 @default.
- W2886392285 cites W2004647830 @default.
- W2886392285 cites W2004767647 @default.
- W2886392285 cites W2014501722 @default.
- W2886392285 cites W2023312901 @default.
- W2886392285 cites W2023462062 @default.
- W2886392285 cites W2029815187 @default.
- W2886392285 cites W2054325787 @default.
- W2886392285 cites W2066148459 @default.
- W2886392285 cites W2066290553 @default.
- W2886392285 cites W2066626803 @default.
- W2886392285 cites W2074414809 @default.
- W2886392285 cites W2081070592 @default.
- W2886392285 cites W2083739595 @default.
- W2886392285 cites W2089653251 @default.
- W2886392285 cites W2113392134 @default.
- W2886392285 cites W2114922523 @default.
- W2886392285 cites W2119961047 @default.
- W2886392285 cites W2131955641 @default.
- W2886392285 cites W2142411786 @default.
- W2886392285 cites W2144405000 @default.
- W2886392285 cites W2148722525 @default.
- W2886392285 cites W2149260566 @default.
- W2886392285 cites W2155544089 @default.
- W2886392285 cites W2340334818 @default.
- W2886392285 cites W2411887133 @default.
- W2886392285 cites W2518643351 @default.
- W2886392285 cites W2594500240 @default.
- W2886392285 cites W2746250280 @default.
- W2886392285 cites W3016149627 @default.
- W2886392285 doi "https://doi.org/10.1016/j.geoderma.2018.07.052" @default.
- W2886392285 hasPublicationYear "2019" @default.
- W2886392285 type Work @default.
- W2886392285 sameAs 2886392285 @default.
- W2886392285 citedByCount "22" @default.
- W2886392285 countsByYear W28863922852019 @default.
- W2886392285 countsByYear W28863922852020 @default.
- W2886392285 countsByYear W28863922852021 @default.
- W2886392285 countsByYear W28863922852022 @default.
- W2886392285 countsByYear W28863922852023 @default.
- W2886392285 crossrefType "journal-article" @default.
- W2886392285 hasAuthorship W2886392285A5057878620 @default.
- W2886392285 hasConcept C104471815 @default.
- W2886392285 hasConcept C107826830 @default.
- W2886392285 hasConcept C114614502 @default.
- W2886392285 hasConcept C152494472 @default.
- W2886392285 hasConcept C159390177 @default.
- W2886392285 hasConcept C159750122 @default.
- W2886392285 hasConcept C181672929 @default.
- W2886392285 hasConcept C205649164 @default.
- W2886392285 hasConcept C2522767166 @default.
- W2886392285 hasConcept C2778755073 @default.
- W2886392285 hasConcept C33923547 @default.
- W2886392285 hasConcept C3742959 @default.
- W2886392285 hasConcept C39432304 @default.
- W2886392285 hasConcept C41008148 @default.
- W2886392285 hasConcept C58640448 @default.
- W2886392285 hasConcept C66882249 @default.
- W2886392285 hasConcept C71864017 @default.
- W2886392285 hasConceptScore W2886392285C104471815 @default.
- W2886392285 hasConceptScore W2886392285C107826830 @default.
- W2886392285 hasConceptScore W2886392285C114614502 @default.
- W2886392285 hasConceptScore W2886392285C152494472 @default.
- W2886392285 hasConceptScore W2886392285C159390177 @default.
- W2886392285 hasConceptScore W2886392285C159750122 @default.
- W2886392285 hasConceptScore W2886392285C181672929 @default.
- W2886392285 hasConceptScore W2886392285C205649164 @default.
- W2886392285 hasConceptScore W2886392285C2522767166 @default.
- W2886392285 hasConceptScore W2886392285C2778755073 @default.
- W2886392285 hasConceptScore W2886392285C33923547 @default.
- W2886392285 hasConceptScore W2886392285C3742959 @default.
- W2886392285 hasConceptScore W2886392285C39432304 @default.
- W2886392285 hasConceptScore W2886392285C41008148 @default.
- W2886392285 hasConceptScore W2886392285C58640448 @default.
- W2886392285 hasConceptScore W2886392285C66882249 @default.
- W2886392285 hasConceptScore W2886392285C71864017 @default.
- W2886392285 hasLocation W28863922851 @default.
- W2886392285 hasOpenAccess W2886392285 @default.
- W2886392285 hasPrimaryLocation W28863922851 @default.
- W2886392285 hasRelatedWork W1794300699 @default.
- W2886392285 hasRelatedWork W2083739595 @default.
- W2886392285 hasRelatedWork W2083964750 @default.
- W2886392285 hasRelatedWork W2095317746 @default.
- W2886392285 hasRelatedWork W2131565132 @default.
- W2886392285 hasRelatedWork W2247452052 @default.
- W2886392285 hasRelatedWork W2899084033 @default.
- W2886392285 hasRelatedWork W2910965040 @default.
- W2886392285 hasRelatedWork W2953150186 @default.
- W2886392285 hasRelatedWork W4210377171 @default.