Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886402456> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2886402456 abstract "In the world of digital communication, data from online sources such as social networks might provide additional information about changing consumer interest and significantly improve the accuracy of forecasting models. In this thesis I investigate whether information from Twitter, Facebook and Google Trends have the ability to improve daily sales forecasts for companies with respect to the forecasts from transactional sales data only. My original contribution to this domain, exposed in the present thesis, consists in the following main steps: 1. Data collection. I collected Twitter, Facebook and Google Trends data for the period May 2013 May 2015 for 75 brands. Historical transactional sales data was supplied by Certona Corporation. 2. Sentiment analysis. I introduced a new sentiment classification approach based on combining the two standard techniques (lexicon-based and machine learning based). The proposed method outperforms the state-of-the-art approach by 7% in F-score. 3. Identification and classification of events. I proposed a framework for events detection and a robust method for clustering Twitter events into different types based on the shape of the Twitter volume and sentiment peaks. This approach allows to capture the varying dynamics of information propagation through the social network. I provide empirical evidence that it is possible to identify types of Twitter events that have significant power to predict spikes in sales. 4. Forecasting next day sales. I explored linear, non-linear and cointegrating relationships between sales and social-media variables for 18 brands and showed that social-media variables can improve daily sales forecasts for the majority of brands by capturing factors, such as consumer sentiment and brand perception. Moreover, I identified that social-media data without sales information, can be used to predict sales direction with the accuracy of 63%. The experts from the industry consider the results obtained in this thesis to be valuable and useful for decision making and for making strategic planning for the future." @default.
- W2886402456 created "2018-08-22" @default.
- W2886402456 creator A5053021674 @default.
- W2886402456 date "2017-12-28" @default.
- W2886402456 modified "2023-09-28" @default.
- W2886402456 title "Evaluating the impact of social-media on sales forecasting: a quantitative study of worlds biggest brands using Twitter, Facebook and Google Trends" @default.
- W2886402456 hasPublicationYear "2017" @default.
- W2886402456 type Work @default.
- W2886402456 sameAs 2886402456 @default.
- W2886402456 citedByCount "0" @default.
- W2886402456 crossrefType "dissertation" @default.
- W2886402456 hasAuthorship W2886402456A5053021674 @default.
- W2886402456 hasConcept C103645729 @default.
- W2886402456 hasConcept C110875604 @default.
- W2886402456 hasConcept C111472728 @default.
- W2886402456 hasConcept C112698675 @default.
- W2886402456 hasConcept C11392498 @default.
- W2886402456 hasConcept C116834253 @default.
- W2886402456 hasConcept C124101348 @default.
- W2886402456 hasConcept C127722929 @default.
- W2886402456 hasConcept C136764020 @default.
- W2886402456 hasConcept C138885662 @default.
- W2886402456 hasConcept C144133560 @default.
- W2886402456 hasConcept C154945302 @default.
- W2886402456 hasConcept C173576120 @default.
- W2886402456 hasConcept C199360897 @default.
- W2886402456 hasConcept C2522767166 @default.
- W2886402456 hasConcept C2778136018 @default.
- W2886402456 hasConcept C2778729106 @default.
- W2886402456 hasConcept C41008148 @default.
- W2886402456 hasConcept C4727928 @default.
- W2886402456 hasConcept C518677369 @default.
- W2886402456 hasConcept C59822182 @default.
- W2886402456 hasConcept C66402592 @default.
- W2886402456 hasConcept C73555534 @default.
- W2886402456 hasConcept C75684735 @default.
- W2886402456 hasConcept C75949130 @default.
- W2886402456 hasConcept C86803240 @default.
- W2886402456 hasConceptScore W2886402456C103645729 @default.
- W2886402456 hasConceptScore W2886402456C110875604 @default.
- W2886402456 hasConceptScore W2886402456C111472728 @default.
- W2886402456 hasConceptScore W2886402456C112698675 @default.
- W2886402456 hasConceptScore W2886402456C11392498 @default.
- W2886402456 hasConceptScore W2886402456C116834253 @default.
- W2886402456 hasConceptScore W2886402456C124101348 @default.
- W2886402456 hasConceptScore W2886402456C127722929 @default.
- W2886402456 hasConceptScore W2886402456C136764020 @default.
- W2886402456 hasConceptScore W2886402456C138885662 @default.
- W2886402456 hasConceptScore W2886402456C144133560 @default.
- W2886402456 hasConceptScore W2886402456C154945302 @default.
- W2886402456 hasConceptScore W2886402456C173576120 @default.
- W2886402456 hasConceptScore W2886402456C199360897 @default.
- W2886402456 hasConceptScore W2886402456C2522767166 @default.
- W2886402456 hasConceptScore W2886402456C2778136018 @default.
- W2886402456 hasConceptScore W2886402456C2778729106 @default.
- W2886402456 hasConceptScore W2886402456C41008148 @default.
- W2886402456 hasConceptScore W2886402456C4727928 @default.
- W2886402456 hasConceptScore W2886402456C518677369 @default.
- W2886402456 hasConceptScore W2886402456C59822182 @default.
- W2886402456 hasConceptScore W2886402456C66402592 @default.
- W2886402456 hasConceptScore W2886402456C73555534 @default.
- W2886402456 hasConceptScore W2886402456C75684735 @default.
- W2886402456 hasConceptScore W2886402456C75949130 @default.
- W2886402456 hasConceptScore W2886402456C86803240 @default.
- W2886402456 hasLocation W28864024561 @default.
- W2886402456 hasOpenAccess W2886402456 @default.
- W2886402456 hasPrimaryLocation W28864024561 @default.
- W2886402456 hasRelatedWork W1819932765 @default.
- W2886402456 hasRelatedWork W1918540025 @default.
- W2886402456 hasRelatedWork W1979192143 @default.
- W2886402456 hasRelatedWork W1996235486 @default.
- W2886402456 hasRelatedWork W2009078316 @default.
- W2886402456 hasRelatedWork W2032509147 @default.
- W2886402456 hasRelatedWork W2086401735 @default.
- W2886402456 hasRelatedWork W2151151482 @default.
- W2886402456 hasRelatedWork W2255637720 @default.
- W2886402456 hasRelatedWork W2499555957 @default.
- W2886402456 hasRelatedWork W2528425850 @default.
- W2886402456 hasRelatedWork W2556195514 @default.
- W2886402456 hasRelatedWork W2741860375 @default.
- W2886402456 hasRelatedWork W2803870618 @default.
- W2886402456 hasRelatedWork W2805328189 @default.
- W2886402456 hasRelatedWork W2908454627 @default.
- W2886402456 hasRelatedWork W3034620805 @default.
- W2886402456 hasRelatedWork W3039358225 @default.
- W2886402456 hasRelatedWork W3133466007 @default.
- W2886402456 hasRelatedWork W3188818968 @default.
- W2886402456 isParatext "false" @default.
- W2886402456 isRetracted "false" @default.
- W2886402456 magId "2886402456" @default.
- W2886402456 workType "dissertation" @default.