Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886519210> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2886519210 endingPage "34" @default.
- W2886519210 startingPage "31" @default.
- W2886519210 abstract "Crime prevention and detection become an important trend in crime and a very challenging to solve crimes. The crime data previously stored from various sources have a tendency to increase steadily. To solve the problems, data mining techniques employ many learning algorithms to extort hidden knowledge from huge volume of data. Data mining is data analyzing techniques to find patterns and trends in crimes. In this propose paper clustering is a data analyzing technique in unsupervised type. This technique is used to divide the same data into the same group and the different data into the other group. For the simple and effective clustering techniques, there are several algorithms such as K-means clustering. This approach is supervised learning scheme that used to dispense objects to one of many pre-determined categories. The algorithms of categorization have been widely applied to the numerous problems that include many various applications. Crime are characterized which change over time and increase continuously. The changing and increasing of crime direct to the issues of understanding the crime behavior, crime predicting, precise detection and managing large volumes of data obtained from various sources." @default.
- W2886519210 created "2018-08-22" @default.
- W2886519210 creator A5003405896 @default.
- W2886519210 date "2018-01-01" @default.
- W2886519210 modified "2023-09-26" @default.
- W2886519210 title "Crime Data Analysis Using Data Mining Techniques to Improve Crimes Prevention" @default.
- W2886519210 hasPublicationYear "2018" @default.
- W2886519210 type Work @default.
- W2886519210 sameAs 2886519210 @default.
- W2886519210 citedByCount "1" @default.
- W2886519210 countsByYear W28865192102021 @default.
- W2886519210 crossrefType "journal-article" @default.
- W2886519210 hasAuthorship W2886519210A5003405896 @default.
- W2886519210 hasConcept C119857082 @default.
- W2886519210 hasConcept C121332964 @default.
- W2886519210 hasConcept C124101348 @default.
- W2886519210 hasConcept C144024400 @default.
- W2886519210 hasConcept C154945302 @default.
- W2886519210 hasConcept C17744445 @default.
- W2886519210 hasConcept C199539241 @default.
- W2886519210 hasConcept C20556612 @default.
- W2886519210 hasConcept C2522767166 @default.
- W2886519210 hasConcept C2776348852 @default.
- W2886519210 hasConcept C2776876444 @default.
- W2886519210 hasConcept C41008148 @default.
- W2886519210 hasConcept C62520636 @default.
- W2886519210 hasConcept C73484699 @default.
- W2886519210 hasConcept C73555534 @default.
- W2886519210 hasConcept C8038995 @default.
- W2886519210 hasConcept C94124525 @default.
- W2886519210 hasConceptScore W2886519210C119857082 @default.
- W2886519210 hasConceptScore W2886519210C121332964 @default.
- W2886519210 hasConceptScore W2886519210C124101348 @default.
- W2886519210 hasConceptScore W2886519210C144024400 @default.
- W2886519210 hasConceptScore W2886519210C154945302 @default.
- W2886519210 hasConceptScore W2886519210C17744445 @default.
- W2886519210 hasConceptScore W2886519210C199539241 @default.
- W2886519210 hasConceptScore W2886519210C20556612 @default.
- W2886519210 hasConceptScore W2886519210C2522767166 @default.
- W2886519210 hasConceptScore W2886519210C2776348852 @default.
- W2886519210 hasConceptScore W2886519210C2776876444 @default.
- W2886519210 hasConceptScore W2886519210C41008148 @default.
- W2886519210 hasConceptScore W2886519210C62520636 @default.
- W2886519210 hasConceptScore W2886519210C73484699 @default.
- W2886519210 hasConceptScore W2886519210C73555534 @default.
- W2886519210 hasConceptScore W2886519210C8038995 @default.
- W2886519210 hasConceptScore W2886519210C94124525 @default.
- W2886519210 hasIssue "2" @default.
- W2886519210 hasLocation W28865192101 @default.
- W2886519210 hasOpenAccess W2886519210 @default.
- W2886519210 hasPrimaryLocation W28865192101 @default.
- W2886519210 hasRelatedWork W1581185956 @default.
- W2886519210 hasRelatedWork W2045432444 @default.
- W2886519210 hasRelatedWork W2169738360 @default.
- W2886519210 hasRelatedWork W2182247575 @default.
- W2886519210 hasRelatedWork W2184856127 @default.
- W2886519210 hasRelatedWork W2186829309 @default.
- W2886519210 hasRelatedWork W2188164722 @default.
- W2886519210 hasRelatedWork W2303210576 @default.
- W2886519210 hasRelatedWork W2613264270 @default.
- W2886519210 hasRelatedWork W2780029216 @default.
- W2886519210 hasRelatedWork W2795945776 @default.
- W2886519210 hasRelatedWork W2801334538 @default.
- W2886519210 hasRelatedWork W2884945561 @default.
- W2886519210 hasRelatedWork W2894879982 @default.
- W2886519210 hasRelatedWork W2992165749 @default.
- W2886519210 hasRelatedWork W3043696297 @default.
- W2886519210 hasRelatedWork W3047803724 @default.
- W2886519210 hasRelatedWork W3122105770 @default.
- W2886519210 hasRelatedWork W3164129025 @default.
- W2886519210 hasRelatedWork W2592865110 @default.
- W2886519210 hasVolume "10" @default.
- W2886519210 isParatext "false" @default.
- W2886519210 isRetracted "false" @default.
- W2886519210 magId "2886519210" @default.
- W2886519210 workType "article" @default.