Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886646984> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2886646984 abstract "This report contains preliminary results of the study aiming at automating legal evaluation of privacy policies, under the GDPR, using artificial intelligence (machine learning), in order to empower the civil society representing the interests of consumers. We outline what requirements a GDPR-complaint privacy policy should meet (comprehensive information, clear language, fair processing), as well as what are the ways in which these documents can be unlawful (if required information is insufficient, language unclear, or potentially unfair processing indicated). Further, we analyse the contents of privacy policies of Google, Facebook (and Instagram), Amazon, Apple, Microsoft, WhatsApp, Twitter, Uber, AirBnB, Booking.com, Skyscanner, Netflix, Steam and Epic Games. The experiments we conducted on these documents, using various machine learning techniques, lead us to the conclusion that this task can be, to a significant degree, realized by computers, if a sufficiently large data set is created. This, given the amount of privacy policies online, is a task worth investing time and effort. Our study indicates that none of the analysed privacy policies meets the requirements of the GDPR. The evaluated corpus, comprising 3658 sentences (80.398 words) contains 401 sentences (11.0%) which we marked as containing unclear language, and 1240 sentences (33.9%) that we marked as potentially unlawful clause, i.e. either a problematic processing” clause, or an “insufficient information” clause (under articles 13 and 14 of the GDPR). Hence, there is a significant room for improvement on the side of business, as well as for action on the side of consumer organizations and supervisory authorities." @default.
- W2886646984 created "2018-08-22" @default.
- W2886646984 creator A5021655388 @default.
- W2886646984 creator A5048325936 @default.
- W2886646984 creator A5062424045 @default.
- W2886646984 creator A5074196362 @default.
- W2886646984 creator A5078176771 @default.
- W2886646984 creator A5080634543 @default.
- W2886646984 creator A5081610110 @default.
- W2886646984 creator A5084837357 @default.
- W2886646984 date "2018-01-01" @default.
- W2886646984 modified "2023-10-02" @default.
- W2886646984 title "Claudette Meets GDPR: Automating the Evaluation of Privacy Policies Using Artificial Intelligence" @default.
- W2886646984 cites W1011630013 @default.
- W2886646984 cites W2118020653 @default.
- W2886646984 cites W2322232668 @default.
- W2886646984 cites W2489148913 @default.
- W2886646984 cites W2644877912 @default.
- W2886646984 cites W2800953611 @default.
- W2886646984 cites W2919115771 @default.
- W2886646984 cites W3103764297 @default.
- W2886646984 cites W4239846651 @default.
- W2886646984 cites W4249502303 @default.
- W2886646984 doi "https://doi.org/10.2139/ssrn.3208596" @default.
- W2886646984 hasPublicationYear "2018" @default.
- W2886646984 type Work @default.
- W2886646984 sameAs 2886646984 @default.
- W2886646984 citedByCount "23" @default.
- W2886646984 countsByYear W28866469842018 @default.
- W2886646984 countsByYear W28866469842019 @default.
- W2886646984 countsByYear W28866469842020 @default.
- W2886646984 countsByYear W28866469842021 @default.
- W2886646984 countsByYear W28866469842022 @default.
- W2886646984 countsByYear W28866469842023 @default.
- W2886646984 crossrefType "journal-article" @default.
- W2886646984 hasAuthorship W2886646984A5021655388 @default.
- W2886646984 hasAuthorship W2886646984A5048325936 @default.
- W2886646984 hasAuthorship W2886646984A5062424045 @default.
- W2886646984 hasAuthorship W2886646984A5074196362 @default.
- W2886646984 hasAuthorship W2886646984A5078176771 @default.
- W2886646984 hasAuthorship W2886646984A5080634543 @default.
- W2886646984 hasAuthorship W2886646984A5081610110 @default.
- W2886646984 hasAuthorship W2886646984A5084837357 @default.
- W2886646984 hasBestOaLocation W28866469842 @default.
- W2886646984 hasConcept C102938260 @default.
- W2886646984 hasConcept C108827166 @default.
- W2886646984 hasConcept C123201435 @default.
- W2886646984 hasConcept C154945302 @default.
- W2886646984 hasConcept C193934123 @default.
- W2886646984 hasConcept C38652104 @default.
- W2886646984 hasConcept C41008148 @default.
- W2886646984 hasConceptScore W2886646984C102938260 @default.
- W2886646984 hasConceptScore W2886646984C108827166 @default.
- W2886646984 hasConceptScore W2886646984C123201435 @default.
- W2886646984 hasConceptScore W2886646984C154945302 @default.
- W2886646984 hasConceptScore W2886646984C193934123 @default.
- W2886646984 hasConceptScore W2886646984C38652104 @default.
- W2886646984 hasConceptScore W2886646984C41008148 @default.
- W2886646984 hasLocation W28866469841 @default.
- W2886646984 hasLocation W28866469842 @default.
- W2886646984 hasLocation W28866469843 @default.
- W2886646984 hasOpenAccess W2886646984 @default.
- W2886646984 hasPrimaryLocation W28866469841 @default.
- W2886646984 hasRelatedWork W2116878667 @default.
- W2886646984 hasRelatedWork W2118333568 @default.
- W2886646984 hasRelatedWork W2132024542 @default.
- W2886646984 hasRelatedWork W2163661494 @default.
- W2886646984 hasRelatedWork W2549995367 @default.
- W2886646984 hasRelatedWork W2963335492 @default.
- W2886646984 hasRelatedWork W2994243660 @default.
- W2886646984 hasRelatedWork W3016483802 @default.
- W2886646984 hasRelatedWork W3038106605 @default.
- W2886646984 hasRelatedWork W4241527182 @default.
- W2886646984 isParatext "false" @default.
- W2886646984 isRetracted "false" @default.
- W2886646984 magId "2886646984" @default.
- W2886646984 workType "article" @default.