Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886658897> ?p ?o ?g. }
- W2886658897 endingPage "e1947" @default.
- W2886658897 startingPage "e1947" @default.
- W2886658897 abstract "Background The quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition constitute a key point for the use of personalized treatment options for the patella-femoral joint. In this paper, we integrated statistical shape models (SSM), able to represent the individual morphology of the trochlea by means of a set of parameters and stacked sparse autoencoder (SSPA) networks, which exploit the parameters to discriminate among different levels of abnormalities. Methods Two datasets of distal femur reconstructions were obtained from CT scans, including pathologic and physiologic shapes. Both of them were processed to compute SSM of healthy and dysplastic trochlear regions. The parameters obtained by the 3D-3D reconstruction of a femur shape were fed into a trained SSPA classifier to automatically establish the membership to one of three clinical conditions, namely, healthy, mild dysplasia, and severe dysplasia of the trochlea. The validation was performed on a subset of the shapes not used in the construction of the SSM, by verifying the occurrence of a correct classification. Results A major finding of the work is that SSM are able to represent anomalies of the trochlear geometry by means of specific eigenmodes of variation and to model the interplay between morphologic features related to dysplasia. Exploiting the patient-specific morphing parameters of SSM, computed by means of a 3D-3D reconstruction, SSPA is demonstrated to outperform traditional discriminant analysis in classifying healthy, mild, and severe trochlear dysplasia providing 99%, 97%, and 98% accuracy for each of the three classes, respectively (discriminant analysis accuracy: 85%, 89%, and 77%). Conclusions From a clinical point of view, this paper contributes to support the increasing role of SSM, integrated with deep learning techniques, in diagnostics and therapy definition as quantitative and advanced visualization tools." @default.
- W2886658897 created "2018-08-22" @default.
- W2886658897 creator A5000570208 @default.
- W2886658897 creator A5051005175 @default.
- W2886658897 creator A5056235763 @default.
- W2886658897 creator A5079877840 @default.
- W2886658897 date "2018-08-02" @default.
- W2886658897 modified "2023-10-16" @default.
- W2886658897 title "Stacked sparse autoencoder networks and statistical shape models for automatic staging of distal femur trochlear dysplasia" @default.
- W2886658897 cites W1457602677 @default.
- W2886658897 cites W1963504094 @default.
- W2886658897 cites W1978218100 @default.
- W2886658897 cites W1982943289 @default.
- W2886658897 cites W1993171213 @default.
- W2886658897 cites W1995760433 @default.
- W2886658897 cites W1997304491 @default.
- W2886658897 cites W1997908992 @default.
- W2886658897 cites W2004001988 @default.
- W2886658897 cites W2011941596 @default.
- W2886658897 cites W2020413993 @default.
- W2886658897 cites W2024185153 @default.
- W2886658897 cites W2033200993 @default.
- W2886658897 cites W2037648963 @default.
- W2886658897 cites W2038952578 @default.
- W2886658897 cites W2041075650 @default.
- W2886658897 cites W2043641819 @default.
- W2886658897 cites W2046628404 @default.
- W2886658897 cites W2051022923 @default.
- W2886658897 cites W2054254524 @default.
- W2886658897 cites W2054619190 @default.
- W2886658897 cites W2093680557 @default.
- W2886658897 cites W2095102679 @default.
- W2886658897 cites W2105864630 @default.
- W2886658897 cites W2114154169 @default.
- W2886658897 cites W2116004486 @default.
- W2886658897 cites W2118997883 @default.
- W2886658897 cites W2119717318 @default.
- W2886658897 cites W2129663601 @default.
- W2886658897 cites W2134236847 @default.
- W2886658897 cites W2139001691 @default.
- W2886658897 cites W2149131072 @default.
- W2886658897 cites W2165902556 @default.
- W2886658897 cites W2171591873 @default.
- W2886658897 cites W2248620004 @default.
- W2886658897 cites W2265267185 @default.
- W2886658897 cites W2293050990 @default.
- W2886658897 cites W2556806401 @default.
- W2886658897 cites W2592765733 @default.
- W2886658897 cites W2621007086 @default.
- W2886658897 cites W2623298038 @default.
- W2886658897 doi "https://doi.org/10.1002/rcs.1947" @default.
- W2886658897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30073759" @default.
- W2886658897 hasPublicationYear "2018" @default.
- W2886658897 type Work @default.
- W2886658897 sameAs 2886658897 @default.
- W2886658897 citedByCount "10" @default.
- W2886658897 countsByYear W28866588972019 @default.
- W2886658897 countsByYear W28866588972020 @default.
- W2886658897 countsByYear W28866588972021 @default.
- W2886658897 countsByYear W28866588972022 @default.
- W2886658897 countsByYear W28866588972023 @default.
- W2886658897 crossrefType "journal-article" @default.
- W2886658897 hasAuthorship W2886658897A5000570208 @default.
- W2886658897 hasAuthorship W2886658897A5051005175 @default.
- W2886658897 hasAuthorship W2886658897A5056235763 @default.
- W2886658897 hasAuthorship W2886658897A5079877840 @default.
- W2886658897 hasConcept C101738243 @default.
- W2886658897 hasConcept C105702510 @default.
- W2886658897 hasConcept C141071460 @default.
- W2886658897 hasConcept C142724271 @default.
- W2886658897 hasConcept C153180895 @default.
- W2886658897 hasConcept C154945302 @default.
- W2886658897 hasConcept C2775894508 @default.
- W2886658897 hasConcept C2780368125 @default.
- W2886658897 hasConcept C2780554211 @default.
- W2886658897 hasConcept C41008148 @default.
- W2886658897 hasConcept C50644808 @default.
- W2886658897 hasConcept C71924100 @default.
- W2886658897 hasConceptScore W2886658897C101738243 @default.
- W2886658897 hasConceptScore W2886658897C105702510 @default.
- W2886658897 hasConceptScore W2886658897C141071460 @default.
- W2886658897 hasConceptScore W2886658897C142724271 @default.
- W2886658897 hasConceptScore W2886658897C153180895 @default.
- W2886658897 hasConceptScore W2886658897C154945302 @default.
- W2886658897 hasConceptScore W2886658897C2775894508 @default.
- W2886658897 hasConceptScore W2886658897C2780368125 @default.
- W2886658897 hasConceptScore W2886658897C2780554211 @default.
- W2886658897 hasConceptScore W2886658897C41008148 @default.
- W2886658897 hasConceptScore W2886658897C50644808 @default.
- W2886658897 hasConceptScore W2886658897C71924100 @default.
- W2886658897 hasIssue "6" @default.
- W2886658897 hasLocation W28866588971 @default.
- W2886658897 hasLocation W28866588972 @default.
- W2886658897 hasOpenAccess W2886658897 @default.
- W2886658897 hasPrimaryLocation W28866588971 @default.
- W2886658897 hasRelatedWork W2572600474 @default.
- W2886658897 hasRelatedWork W2592385986 @default.
- W2886658897 hasRelatedWork W2776466379 @default.