Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886737850> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2886737850 abstract "This thesis focused on the computational content of classical proofs, and specifically on proofs with side-effects and Krivine classical realizability. The manuscript is divided in three parts, the first of which consists of a detailed introduction to the concepts used in the sequel.The second part deals with the computational content of the axiom of dependent choice in classical logic. This works is in the continuity of dPAω system of Hugo Herbelin, which allows to adapt the constructive proof of the axiom of choice in Martin-Lof's type theory in order to turn it into a constructive proof of the axiom of dependent choice in a setting compatible with classical logic. The principal goal of this part is to prove the property of normalization for dPAω, on which relies the consistency of the system. Such a proof is hard to obtain, due to the simultaneous presence of dependent types (for the constructive part of the choice), of control operators (for classical logic), of co-inductive objects (in order to encode functions of type N → A as streams (a₀,a₁,...)) and of lazy evaluation with sharing (for this co-inductive objects). This difficulties are first studied separately. In particular, we show the normalization of classical call-by-need (presented as an extension of the λµµ-calculus with shared environments) by means of realizability techniques. Next, we develop a classical sequent calculus with dependent types, defined again as an adaptation of the λµµ-calcul whose soundness is proved thanks to a CPS-translation which takes the dependencies into account. Last, a sequent-calculus variant of dPAω is introduced, combining the two previous systems. Its normalization is finally proved using realizability techniques.The last part, more oriented towards semantics, studies the duality between the call-by-name and call-by-value evaluation strategies in a purely algebraic setting, inspired from several works around classical realizability (and in particular Krivine realizability algebras). This work relies on the notion of implicative algebras developed by Alexandre Miquel, a very simple algebraic structure generalizing at the same time complete Boolean algebras and Krivine realizability algebras, in such a way that it allows to express in a same setting the theory of forcing (in the sense of Cohen) and the theory of classical realizability (in the sense of Krivine). The main default of these structures is that they are deeply oriented towards the λ-calculus, and that they only allows to faithfully interpret languages in call-by-name. To remediate the situation, we introduce two variants of implicative algebras: disjunctive algebras, centered on the par connective of linear logic (but in a non-linear framework) and naturally adapted to languages in call-by-name; and conjunctives algebras, centered on the tensor connective of linear logic and adapted to languages in call-by-value. Amongst other things, we show that disjunctive algebras are particular cases of implicative algebras and that conjunctive algebras can be obtained from disjunctive algebras (by reversing the underlying order). Moreover, we show how to interpret in these framework the fragments of Guillaume Munch-Maccagnoni's system L for call-by-value (within conjunctive algebras) and for call-by-name (within disjunctive algebras)." @default.
- W2886737850 created "2018-08-22" @default.
- W2886737850 creator A5010564634 @default.
- W2886737850 date "2017-11-17" @default.
- W2886737850 modified "2023-09-29" @default.
- W2886737850 title "Classical realizability and side-effects" @default.
- W2886737850 hasPublicationYear "2017" @default.
- W2886737850 type Work @default.
- W2886737850 sameAs 2886737850 @default.
- W2886737850 citedByCount "2" @default.
- W2886737850 countsByYear W28867378502019 @default.
- W2886737850 countsByYear W28867378502020 @default.
- W2886737850 crossrefType "dissertation" @default.
- W2886737850 hasAuthorship W2886737850A5010564634 @default.
- W2886737850 hasConcept C108710211 @default.
- W2886737850 hasConcept C11413529 @default.
- W2886737850 hasConcept C118615104 @default.
- W2886737850 hasConcept C136119220 @default.
- W2886737850 hasConcept C151797676 @default.
- W2886737850 hasConcept C153046414 @default.
- W2886737850 hasConcept C167729594 @default.
- W2886737850 hasConcept C177264268 @default.
- W2886737850 hasConcept C178421362 @default.
- W2886737850 hasConcept C18903297 @default.
- W2886737850 hasConcept C199343813 @default.
- W2886737850 hasConcept C199360897 @default.
- W2886737850 hasConcept C202444582 @default.
- W2886737850 hasConcept C2524010 @default.
- W2886737850 hasConcept C2776378722 @default.
- W2886737850 hasConcept C2777299769 @default.
- W2886737850 hasConcept C2777686260 @default.
- W2886737850 hasConcept C2778701210 @default.
- W2886737850 hasConcept C28077239 @default.
- W2886737850 hasConcept C32241873 @default.
- W2886737850 hasConcept C33923547 @default.
- W2886737850 hasConcept C39920170 @default.
- W2886737850 hasConcept C41008148 @default.
- W2886737850 hasConcept C65880906 @default.
- W2886737850 hasConcept C71924100 @default.
- W2886737850 hasConcept C86803240 @default.
- W2886737850 hasConcept C89421646 @default.
- W2886737850 hasConcept C93682546 @default.
- W2886737850 hasConcept C98045186 @default.
- W2886737850 hasConceptScore W2886737850C108710211 @default.
- W2886737850 hasConceptScore W2886737850C11413529 @default.
- W2886737850 hasConceptScore W2886737850C118615104 @default.
- W2886737850 hasConceptScore W2886737850C136119220 @default.
- W2886737850 hasConceptScore W2886737850C151797676 @default.
- W2886737850 hasConceptScore W2886737850C153046414 @default.
- W2886737850 hasConceptScore W2886737850C167729594 @default.
- W2886737850 hasConceptScore W2886737850C177264268 @default.
- W2886737850 hasConceptScore W2886737850C178421362 @default.
- W2886737850 hasConceptScore W2886737850C18903297 @default.
- W2886737850 hasConceptScore W2886737850C199343813 @default.
- W2886737850 hasConceptScore W2886737850C199360897 @default.
- W2886737850 hasConceptScore W2886737850C202444582 @default.
- W2886737850 hasConceptScore W2886737850C2524010 @default.
- W2886737850 hasConceptScore W2886737850C2776378722 @default.
- W2886737850 hasConceptScore W2886737850C2777299769 @default.
- W2886737850 hasConceptScore W2886737850C2777686260 @default.
- W2886737850 hasConceptScore W2886737850C2778701210 @default.
- W2886737850 hasConceptScore W2886737850C28077239 @default.
- W2886737850 hasConceptScore W2886737850C32241873 @default.
- W2886737850 hasConceptScore W2886737850C33923547 @default.
- W2886737850 hasConceptScore W2886737850C39920170 @default.
- W2886737850 hasConceptScore W2886737850C41008148 @default.
- W2886737850 hasConceptScore W2886737850C65880906 @default.
- W2886737850 hasConceptScore W2886737850C71924100 @default.
- W2886737850 hasConceptScore W2886737850C86803240 @default.
- W2886737850 hasConceptScore W2886737850C89421646 @default.
- W2886737850 hasConceptScore W2886737850C93682546 @default.
- W2886737850 hasConceptScore W2886737850C98045186 @default.
- W2886737850 hasLocation W28867378501 @default.
- W2886737850 hasOpenAccess W2886737850 @default.
- W2886737850 hasPrimaryLocation W28867378501 @default.
- W2886737850 hasRelatedWork W15085223 @default.
- W2886737850 hasRelatedWork W1554475578 @default.
- W2886737850 hasRelatedWork W1840469622 @default.
- W2886737850 hasRelatedWork W1842417814 @default.
- W2886737850 hasRelatedWork W1999780552 @default.
- W2886737850 hasRelatedWork W2011173527 @default.
- W2886737850 hasRelatedWork W2055390302 @default.
- W2886737850 hasRelatedWork W2097270855 @default.
- W2886737850 hasRelatedWork W2110361925 @default.
- W2886737850 hasRelatedWork W2153577968 @default.
- W2886737850 hasRelatedWork W2408342377 @default.
- W2886737850 hasRelatedWork W2736955251 @default.
- W2886737850 hasRelatedWork W2882677335 @default.
- W2886737850 hasRelatedWork W2885176283 @default.
- W2886737850 hasRelatedWork W2897208881 @default.
- W2886737850 hasRelatedWork W2963271462 @default.
- W2886737850 hasRelatedWork W3098060485 @default.
- W2886737850 hasRelatedWork W3208593457 @default.
- W2886737850 hasRelatedWork W2506656702 @default.
- W2886737850 hasRelatedWork W2565883416 @default.
- W2886737850 isParatext "false" @default.
- W2886737850 isRetracted "false" @default.
- W2886737850 magId "2886737850" @default.
- W2886737850 workType "dissertation" @default.