Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886912301> ?p ?o ?g. }
- W2886912301 abstract "When computable, a linear feedback control guarantees the stability of a steady-state flow. However in many cases the stability region of the resulting closed-loop system might be too small to be implemented in practice, or better performance of the closed-loop system might be desired. This motivates investigations of nonlinear feedback strategies to either expand the stability region or improve the local performance. Nonlinear feedback laws can now be efficiently computed using the nonlinear systems toolbox created by Art Krener. However, for distributed parameter systems, it must be implemented on reduced-order models that are very low-dimensional (or in special cases on very coarse discretizations of the original equations). This is also the case for linear systems, but here the dimension of the model has to be much lower. In this paper, we use a model feedback control problem with quadratic and cubic nonlinear terms and compute polynomial solutions to the Hamilton-Jacobi-Bellman equations. Of particular interest is understanding the expansion of the stability regions as the degree of the control is increased for this simple problem. Then we investigate the closed-loop performance benefits on a model flow control problem described by the one-dimensional Burgers equation. This model has the same nonlinear term, but the simplicity of this distributed parameter system allows us to evaluate the performance of both linear and nonlinear feedback gains from the discretized linearized or quadratic system, respectively. We note that the setup time for these solvers can be very expensive due to the need to compute all of the required derivatives of the system and control objective functions when building the Taylor polynomials. Thus, we have developed improvements in the software by using automatic differentiation methods. We also investigate the simplification of the algorithm when the state equations have the quadratic nonlinearities that are typical of flow control problems." @default.
- W2886912301 created "2018-08-22" @default.
- W2886912301 creator A5015292098 @default.
- W2886912301 creator A5032389517 @default.
- W2886912301 date "2018-06-01" @default.
- W2886912301 modified "2023-09-28" @default.
- W2886912301 title "Computation of Nonlinear Feedback for Flow Control Problems" @default.
- W2886912301 cites W1427521700 @default.
- W2886912301 cites W1547930079 @default.
- W2886912301 cites W1585773866 @default.
- W2886912301 cites W1598902920 @default.
- W2886912301 cites W1838705720 @default.
- W2886912301 cites W1954793758 @default.
- W2886912301 cites W1991243721 @default.
- W2886912301 cites W2001395129 @default.
- W2886912301 cites W2002573186 @default.
- W2886912301 cites W2030140685 @default.
- W2886912301 cites W2051448127 @default.
- W2886912301 cites W2071509239 @default.
- W2886912301 cites W2077730310 @default.
- W2886912301 cites W2084689793 @default.
- W2886912301 cites W2089720521 @default.
- W2886912301 cites W2103839795 @default.
- W2886912301 cites W2138178096 @default.
- W2886912301 cites W2146333492 @default.
- W2886912301 cites W2232017100 @default.
- W2886912301 cites W2289862585 @default.
- W2886912301 cites W2532969762 @default.
- W2886912301 cites W2754527997 @default.
- W2886912301 cites W400678491 @default.
- W2886912301 doi "https://doi.org/10.23919/acc.2018.8431410" @default.
- W2886912301 hasPublicationYear "2018" @default.
- W2886912301 type Work @default.
- W2886912301 sameAs 2886912301 @default.
- W2886912301 citedByCount "4" @default.
- W2886912301 countsByYear W28869123012019 @default.
- W2886912301 countsByYear W28869123012020 @default.
- W2886912301 countsByYear W28869123012021 @default.
- W2886912301 crossrefType "proceedings-article" @default.
- W2886912301 hasAuthorship W2886912301A5015292098 @default.
- W2886912301 hasAuthorship W2886912301A5032389517 @default.
- W2886912301 hasConcept C112972136 @default.
- W2886912301 hasConcept C119857082 @default.
- W2886912301 hasConcept C121332964 @default.
- W2886912301 hasConcept C126255220 @default.
- W2886912301 hasConcept C129844170 @default.
- W2886912301 hasConcept C134306372 @default.
- W2886912301 hasConcept C154945302 @default.
- W2886912301 hasConcept C158622935 @default.
- W2886912301 hasConcept C2524010 @default.
- W2886912301 hasConcept C2775924081 @default.
- W2886912301 hasConcept C28826006 @default.
- W2886912301 hasConcept C33923547 @default.
- W2886912301 hasConcept C41008148 @default.
- W2886912301 hasConcept C47446073 @default.
- W2886912301 hasConcept C62520636 @default.
- W2886912301 hasConcept C6802819 @default.
- W2886912301 hasConcept C73000952 @default.
- W2886912301 hasConcept C85736874 @default.
- W2886912301 hasConcept C90119067 @default.
- W2886912301 hasConcept C91575142 @default.
- W2886912301 hasConcept C91581856 @default.
- W2886912301 hasConceptScore W2886912301C112972136 @default.
- W2886912301 hasConceptScore W2886912301C119857082 @default.
- W2886912301 hasConceptScore W2886912301C121332964 @default.
- W2886912301 hasConceptScore W2886912301C126255220 @default.
- W2886912301 hasConceptScore W2886912301C129844170 @default.
- W2886912301 hasConceptScore W2886912301C134306372 @default.
- W2886912301 hasConceptScore W2886912301C154945302 @default.
- W2886912301 hasConceptScore W2886912301C158622935 @default.
- W2886912301 hasConceptScore W2886912301C2524010 @default.
- W2886912301 hasConceptScore W2886912301C2775924081 @default.
- W2886912301 hasConceptScore W2886912301C28826006 @default.
- W2886912301 hasConceptScore W2886912301C33923547 @default.
- W2886912301 hasConceptScore W2886912301C41008148 @default.
- W2886912301 hasConceptScore W2886912301C47446073 @default.
- W2886912301 hasConceptScore W2886912301C62520636 @default.
- W2886912301 hasConceptScore W2886912301C6802819 @default.
- W2886912301 hasConceptScore W2886912301C73000952 @default.
- W2886912301 hasConceptScore W2886912301C85736874 @default.
- W2886912301 hasConceptScore W2886912301C90119067 @default.
- W2886912301 hasConceptScore W2886912301C91575142 @default.
- W2886912301 hasConceptScore W2886912301C91581856 @default.
- W2886912301 hasLocation W28869123011 @default.
- W2886912301 hasOpenAccess W2886912301 @default.
- W2886912301 hasPrimaryLocation W28869123011 @default.
- W2886912301 hasRelatedWork W1506540811 @default.
- W2886912301 hasRelatedWork W1520813716 @default.
- W2886912301 hasRelatedWork W1643967676 @default.
- W2886912301 hasRelatedWork W1947445979 @default.
- W2886912301 hasRelatedWork W1966088028 @default.
- W2886912301 hasRelatedWork W2035850520 @default.
- W2886912301 hasRelatedWork W2042152626 @default.
- W2886912301 hasRelatedWork W2059585013 @default.
- W2886912301 hasRelatedWork W2136597601 @default.
- W2886912301 hasRelatedWork W2160651633 @default.
- W2886912301 hasRelatedWork W2737199241 @default.
- W2886912301 hasRelatedWork W2747463581 @default.
- W2886912301 hasRelatedWork W2799848853 @default.
- W2886912301 hasRelatedWork W2916142672 @default.