Matches in SemOpenAlex for { <https://semopenalex.org/work/W2886980296> ?p ?o ?g. }
- W2886980296 endingPage "171" @default.
- W2886980296 startingPage "158" @default.
- W2886980296 abstract "Fire radiative power (FRP) retrievals are now routinely made from polar and geostationary instruments, providing a means to estimate fuel consumption and trace gas and aerosol emissions directly from remotely sensed observations. This study presents the first investigation of the impact of vegetation canopy structure (percentage canopy cover and leaf area index, LAI) on FRP retrievals, based on 3D radiative transfer model simulations. The Discrete Anisotropic Radiative Transfer (DART) model is used to simulate above-canopy observations made through 3D vegetation canopies with different structural arrangements, under which a centrally positioned uniform landscape fire is burning. The vegetation canopy is modelled in two ways, as an opaque structure and as a hybrid turbid medium. The percentage canopy cover in each simulated scene is varied between 5 and 95%, and the FRP retrieved above the canopy is found to decrease in proportion to percentage canopy cover when the canopy is opaque, a finding that is in agreement with a series of small scale outdoor measurements conducted to evaluate the realism of the simulations. However, when the canopy is modelled as a turbid medium, which is in some ways a more realistic representation of a real ‘gappy’ vegetation canopy, the degree of FRP interception occurring at any particular canopy cover decreases by ~ 14%, due to some fire emitted thermal energy being transmitted through the canopy gaps. The simulations also reveal the impact of canopy LAI on above-canopy FRP retrievals, reducing these by 6% when both canopy cover and LAI are low (5% and < 1.0 respectively), but by up to 92% when canopy cover and scene LAI are high (95% and ~8 respectively). We use the derived relationships between FRP interception and canopy structure, along with MODIS LAI and percentage tree cover data, to adjust 2004–2012 fire radiative energy (FRE) estimates calculated from FRP data collected by the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument. The adjusted annual FRE is on average 15% greater than estimated, and is characterized by low inter-annual variability as result of the majority of fire activity occurring in areas where percentage tree cover remains below 40%. Landscape burning occurs more frequently in areas of higher tree cover in southern hemisphere rather than northern hemisphere Africa, leading to a larger annual FRE adjustment (18.5% compared to 16.3%). This study illustrates the impact that canopy interception has on FRP for the first time at the satellite scale, and over Africa demonstrates a large but temporally consistent underestimation which can be accounted for using LAI and percentage tree cover metrics when estimating fuel consumption and atmospheric emissions from the FRP retrievals." @default.
- W2886980296 created "2018-08-22" @default.
- W2886980296 creator A5046155311 @default.
- W2886980296 creator A5056854334 @default.
- W2886980296 creator A5078740130 @default.
- W2886980296 creator A5088275081 @default.
- W2886980296 creator A5090533097 @default.
- W2886980296 creator A5090928928 @default.
- W2886980296 date "2018-11-01" @default.
- W2886980296 modified "2023-09-30" @default.
- W2886980296 title "Investigating the impact of overlying vegetation canopy structures on fire radiative power (FRP) retrieval through simulation and measurement" @default.
- W2886980296 cites W1488868911 @default.
- W2886980296 cites W1542549258 @default.
- W2886980296 cites W1556347830 @default.
- W2886980296 cites W1567586568 @default.
- W2886980296 cites W1744313060 @default.
- W2886980296 cites W1782810975 @default.
- W2886980296 cites W1901896176 @default.
- W2886980296 cites W1966902458 @default.
- W2886980296 cites W1967195108 @default.
- W2886980296 cites W1980891109 @default.
- W2886980296 cites W1991355610 @default.
- W2886980296 cites W1993607053 @default.
- W2886980296 cites W1995103915 @default.
- W2886980296 cites W1998065797 @default.
- W2886980296 cites W2003114532 @default.
- W2886980296 cites W2004860507 @default.
- W2886980296 cites W2006477559 @default.
- W2886980296 cites W2010358643 @default.
- W2886980296 cites W2011221333 @default.
- W2886980296 cites W2011947156 @default.
- W2886980296 cites W2014383059 @default.
- W2886980296 cites W2015169984 @default.
- W2886980296 cites W2018672977 @default.
- W2886980296 cites W2020296885 @default.
- W2886980296 cites W2025599103 @default.
- W2886980296 cites W2037430763 @default.
- W2886980296 cites W2039995444 @default.
- W2886980296 cites W2043477372 @default.
- W2886980296 cites W2043739439 @default.
- W2886980296 cites W2051086800 @default.
- W2886980296 cites W2058042790 @default.
- W2886980296 cites W2061191339 @default.
- W2886980296 cites W2062038475 @default.
- W2886980296 cites W2062811101 @default.
- W2886980296 cites W2062983247 @default.
- W2886980296 cites W2070484211 @default.
- W2886980296 cites W2073100112 @default.
- W2886980296 cites W2079612193 @default.
- W2886980296 cites W2087080707 @default.
- W2886980296 cites W2094466200 @default.
- W2886980296 cites W2095948312 @default.
- W2886980296 cites W2097688980 @default.
- W2886980296 cites W2101267413 @default.
- W2886980296 cites W2102152313 @default.
- W2886980296 cites W2102618689 @default.
- W2886980296 cites W2111542378 @default.
- W2886980296 cites W2114731466 @default.
- W2886980296 cites W2115196840 @default.
- W2886980296 cites W2118488687 @default.
- W2886980296 cites W2120607258 @default.
- W2886980296 cites W2123953360 @default.
- W2886980296 cites W2127152313 @default.
- W2886980296 cites W2130629924 @default.
- W2886980296 cites W2131491776 @default.
- W2886980296 cites W2132328937 @default.
- W2886980296 cites W2134927874 @default.
- W2886980296 cites W2136876992 @default.
- W2886980296 cites W2152504881 @default.
- W2886980296 cites W2152955467 @default.
- W2886980296 cites W2153243519 @default.
- W2886980296 cites W2154048526 @default.
- W2886980296 cites W2154710695 @default.
- W2886980296 cites W2155039075 @default.
- W2886980296 cites W2159896542 @default.
- W2886980296 cites W2161467813 @default.
- W2886980296 cites W2162415150 @default.
- W2886980296 cites W2169359701 @default.
- W2886980296 cites W2171210136 @default.
- W2886980296 cites W2184750056 @default.
- W2886980296 cites W2186484769 @default.
- W2886980296 cites W2295931476 @default.
- W2886980296 cites W2301756981 @default.
- W2886980296 cites W2414181699 @default.
- W2886980296 cites W2471999494 @default.
- W2886980296 cites W2515683205 @default.
- W2886980296 cites W2552725917 @default.
- W2886980296 cites W2732040155 @default.
- W2886980296 cites W2773957561 @default.
- W2886980296 cites W2788697735 @default.
- W2886980296 cites W4242748093 @default.
- W2886980296 doi "https://doi.org/10.1016/j.rse.2018.08.015" @default.
- W2886980296 hasPublicationYear "2018" @default.
- W2886980296 type Work @default.
- W2886980296 sameAs 2886980296 @default.
- W2886980296 citedByCount "16" @default.
- W2886980296 countsByYear W28869802962018 @default.
- W2886980296 countsByYear W28869802962019 @default.