Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887019724> ?p ?o ?g. }
- W2887019724 endingPage "471" @default.
- W2887019724 startingPage "426" @default.
- W2887019724 abstract "The ever-increasing number of resource-constrained machine-type communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as enhanced mobile broadband (eMBB), massive machine type communications (mMTCs), and ultra-reliable and low latency communications (URLLCs), the mMTC brings the unique technical challenge of supporting a huge number of MTC devices in cellular networks, which is the main focus of this paper. The related challenges include quality of service (QoS) provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead, and radio access network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy random access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and narrowband IoT (NB-IoT). Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions toward addressing RAN congestion problem, and then identify potential advantages, challenges, and use cases for the applications of emerging machine learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenario along with the recent advances toward enhancing its learning performance and convergence. Finally, we discuss some open research challenges and promising future research directions." @default.
- W2887019724 created "2018-08-22" @default.
- W2887019724 creator A5004973785 @default.
- W2887019724 creator A5065443071 @default.
- W2887019724 date "2020-01-01" @default.
- W2887019724 modified "2023-10-18" @default.
- W2887019724 title "Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions" @default.
- W2887019724 cites W1481395971 @default.
- W2887019724 cites W1551593752 @default.
- W2887019724 cites W1603438237 @default.
- W2887019724 cites W1609216950 @default.
- W2887019724 cites W1771697193 @default.
- W2887019724 cites W1918371733 @default.
- W2887019724 cites W1959605583 @default.
- W2887019724 cites W1964762922 @default.
- W2887019724 cites W1964800332 @default.
- W2887019724 cites W1966552195 @default.
- W2887019724 cites W1966673493 @default.
- W2887019724 cites W1971698822 @default.
- W2887019724 cites W1973248913 @default.
- W2887019724 cites W1975049228 @default.
- W2887019724 cites W1977295820 @default.
- W2887019724 cites W1996290290 @default.
- W2887019724 cites W1997641400 @default.
- W2887019724 cites W2001565360 @default.
- W2887019724 cites W2002254092 @default.
- W2887019724 cites W2007532770 @default.
- W2887019724 cites W2009505753 @default.
- W2887019724 cites W2012112610 @default.
- W2887019724 cites W2016950426 @default.
- W2887019724 cites W2020946694 @default.
- W2887019724 cites W2032367323 @default.
- W2887019724 cites W2033337118 @default.
- W2887019724 cites W2037026906 @default.
- W2887019724 cites W2037863907 @default.
- W2887019724 cites W2037945507 @default.
- W2887019724 cites W2042768148 @default.
- W2887019724 cites W2043171286 @default.
- W2887019724 cites W2043680631 @default.
- W2887019724 cites W2046502751 @default.
- W2887019724 cites W2049753993 @default.
- W2887019724 cites W2051841434 @default.
- W2887019724 cites W2057374123 @default.
- W2887019724 cites W2059131802 @default.
- W2887019724 cites W2064205969 @default.
- W2887019724 cites W2069143585 @default.
- W2887019724 cites W2087838764 @default.
- W2887019724 cites W2093917343 @default.
- W2887019724 cites W2099618002 @default.
- W2887019724 cites W2104630508 @default.
- W2887019724 cites W2108563286 @default.
- W2887019724 cites W2110767187 @default.
- W2887019724 cites W2113059852 @default.
- W2887019724 cites W2116633494 @default.
- W2887019724 cites W2119137614 @default.
- W2887019724 cites W2119977207 @default.
- W2887019724 cites W2122616116 @default.
- W2887019724 cites W2123503096 @default.
- W2887019724 cites W2124364062 @default.
- W2887019724 cites W2125890412 @default.
- W2887019724 cites W2126341321 @default.
- W2887019724 cites W2128372565 @default.
- W2887019724 cites W2132247362 @default.
- W2887019724 cites W2134295053 @default.
- W2887019724 cites W2136622581 @default.
- W2887019724 cites W2136781444 @default.
- W2887019724 cites W2141804605 @default.
- W2887019724 cites W2148750096 @default.
- W2887019724 cites W2149755240 @default.
- W2887019724 cites W2150355110 @default.
- W2887019724 cites W2154322571 @default.
- W2887019724 cites W2158634442 @default.
- W2887019724 cites W2160145757 @default.
- W2887019724 cites W2160160578 @default.
- W2887019724 cites W2163121240 @default.
- W2887019724 cites W2166156630 @default.
- W2887019724 cites W2166529894 @default.
- W2887019724 cites W2169105710 @default.
- W2887019724 cites W2184814841 @default.
- W2887019724 cites W2193895645 @default.
- W2887019724 cites W2198413857 @default.
- W2887019724 cites W2229087796 @default.
- W2887019724 cites W2233161854 @default.
- W2887019724 cites W2262889796 @default.
- W2887019724 cites W2283268383 @default.
- W2887019724 cites W2289252105 @default.
- W2887019724 cites W2293587938 @default.
- W2887019724 cites W2294498739 @default.
- W2887019724 cites W2308155233 @default.
- W2887019724 cites W2321513967 @default.
- W2887019724 cites W2330619054 @default.
- W2887019724 cites W2334263353 @default.
- W2887019724 cites W2335029765 @default.
- W2887019724 cites W2342408547 @default.
- W2887019724 cites W2343382616 @default.
- W2887019724 cites W2343404382 @default.
- W2887019724 cites W2343955221 @default.
- W2887019724 cites W2344516430 @default.