Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887067276> ?p ?o ?g. }
- W2887067276 endingPage "250" @default.
- W2887067276 startingPage "241" @default.
- W2887067276 abstract "Purpose Patients receiving pencil beam scanning (PBS) proton therapy with the addition of a dynamic collimation system (DCS) are potentially subject to an additional neutron dose from interactions between the incident proton beam and the trimmer blades. This study investigates the secondary neutron dose rates for both single-field uniform dose (SFUD) and intensity modulated proton therapy treatments. Methods and Materials Secondary neutron dose distributions were calculated for both a dynamically collimated and an uncollimated, dual-field chordoma treatment plan and compared with previously published neutron dose rates from other contemporary scanning treatment modalities. Monte Carlo N-Particle transport code was used to track all primary and secondary particles generated from nuclear reactions within the DCS during treatment through a model of the patient geometry acquired from the computed tomography planning data set. Secondary neutron ambient dose equivalent distributions were calculated throughout the patient using a meshgrid with a tally resolution equivalent to that of the treatment planning computed tomography. Results The median healthy-brain neutron ambient dose equivalent for a dynamically collimated intracranial chordoma treatment plan using a DCS was found to be 0.97 mSv/Gy for the right lateral SFUD field, 1.37 mSv/Gy for the apex SFUD field, and 1.24 mSv/Gy for the composite intensity modulated proton therapy distribution from 2 fields. Conclusions These results were at least 55% lower than what has been reported for uniform scanning modalities with brass apertures. However, they still reflect an increase in the excess relative risk of secondary cancer incidence compared with an uncollimated PBS treatment using only a graphite range shifter. Regardless, the secondary neutron dose expected from the DCS for these PBS proton therapy treatments appears to be on the order of, or below, what is expected for alternative collimated proton therapy techniques. Patients receiving pencil beam scanning (PBS) proton therapy with the addition of a dynamic collimation system (DCS) are potentially subject to an additional neutron dose from interactions between the incident proton beam and the trimmer blades. This study investigates the secondary neutron dose rates for both single-field uniform dose (SFUD) and intensity modulated proton therapy treatments. Secondary neutron dose distributions were calculated for both a dynamically collimated and an uncollimated, dual-field chordoma treatment plan and compared with previously published neutron dose rates from other contemporary scanning treatment modalities. Monte Carlo N-Particle transport code was used to track all primary and secondary particles generated from nuclear reactions within the DCS during treatment through a model of the patient geometry acquired from the computed tomography planning data set. Secondary neutron ambient dose equivalent distributions were calculated throughout the patient using a meshgrid with a tally resolution equivalent to that of the treatment planning computed tomography. The median healthy-brain neutron ambient dose equivalent for a dynamically collimated intracranial chordoma treatment plan using a DCS was found to be 0.97 mSv/Gy for the right lateral SFUD field, 1.37 mSv/Gy for the apex SFUD field, and 1.24 mSv/Gy for the composite intensity modulated proton therapy distribution from 2 fields. These results were at least 55% lower than what has been reported for uniform scanning modalities with brass apertures. However, they still reflect an increase in the excess relative risk of secondary cancer incidence compared with an uncollimated PBS treatment using only a graphite range shifter. Regardless, the secondary neutron dose expected from the DCS for these PBS proton therapy treatments appears to be on the order of, or below, what is expected for alternative collimated proton therapy techniques." @default.
- W2887067276 created "2018-08-22" @default.
- W2887067276 creator A5045551248 @default.
- W2887067276 creator A5051325842 @default.
- W2887067276 creator A5079018961 @default.
- W2887067276 creator A5082922062 @default.
- W2887067276 date "2019-01-01" @default.
- W2887067276 modified "2023-09-25" @default.
- W2887067276 title "Secondary Neutron Dose From a Dynamic Collimation System During Intracranial Pencil Beam Scanning Proton Therapy: A Monte Carlo Investigation" @default.
- W2887067276 cites W1666765511 @default.
- W2887067276 cites W1840160029 @default.
- W2887067276 cites W1969027945 @default.
- W2887067276 cites W1970870816 @default.
- W2887067276 cites W1974786165 @default.
- W2887067276 cites W1977288570 @default.
- W2887067276 cites W1983615551 @default.
- W2887067276 cites W1989671043 @default.
- W2887067276 cites W1992260360 @default.
- W2887067276 cites W1997820018 @default.
- W2887067276 cites W1998391976 @default.
- W2887067276 cites W2001265272 @default.
- W2887067276 cites W2001881071 @default.
- W2887067276 cites W2007018464 @default.
- W2887067276 cites W2007134230 @default.
- W2887067276 cites W2008265886 @default.
- W2887067276 cites W2028227240 @default.
- W2887067276 cites W2032968239 @default.
- W2887067276 cites W2041091666 @default.
- W2887067276 cites W2043115868 @default.
- W2887067276 cites W2043182115 @default.
- W2887067276 cites W2043542624 @default.
- W2887067276 cites W2047204133 @default.
- W2887067276 cites W2047763793 @default.
- W2887067276 cites W2051242176 @default.
- W2887067276 cites W2053000325 @default.
- W2887067276 cites W2067480632 @default.
- W2887067276 cites W2077506633 @default.
- W2887067276 cites W2079966966 @default.
- W2887067276 cites W2095228652 @default.
- W2887067276 cites W2111346473 @default.
- W2887067276 cites W2114408362 @default.
- W2887067276 cites W2155911252 @default.
- W2887067276 cites W2163218852 @default.
- W2887067276 cites W2275515869 @default.
- W2887067276 cites W2280232957 @default.
- W2887067276 cites W2344176207 @default.
- W2887067276 cites W2503119724 @default.
- W2887067276 cites W2550332959 @default.
- W2887067276 doi "https://doi.org/10.1016/j.ijrobp.2018.08.012" @default.
- W2887067276 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30114462" @default.
- W2887067276 hasPublicationYear "2019" @default.
- W2887067276 type Work @default.
- W2887067276 sameAs 2887067276 @default.
- W2887067276 citedByCount "20" @default.
- W2887067276 countsByYear W28870672762019 @default.
- W2887067276 countsByYear W28870672762020 @default.
- W2887067276 countsByYear W28870672762021 @default.
- W2887067276 countsByYear W28870672762022 @default.
- W2887067276 countsByYear W28870672762023 @default.
- W2887067276 crossrefType "journal-article" @default.
- W2887067276 hasAuthorship W2887067276A5045551248 @default.
- W2887067276 hasAuthorship W2887067276A5051325842 @default.
- W2887067276 hasAuthorship W2887067276A5079018961 @default.
- W2887067276 hasAuthorship W2887067276A5082922062 @default.
- W2887067276 hasConcept C105795698 @default.
- W2887067276 hasConcept C120665830 @default.
- W2887067276 hasConcept C121332964 @default.
- W2887067276 hasConcept C126838900 @default.
- W2887067276 hasConcept C152568617 @default.
- W2887067276 hasConcept C170226646 @default.
- W2887067276 hasConcept C185544564 @default.
- W2887067276 hasConcept C19499675 @default.
- W2887067276 hasConcept C201645570 @default.
- W2887067276 hasConcept C2775881188 @default.
- W2887067276 hasConcept C2779244869 @default.
- W2887067276 hasConcept C2989005 @default.
- W2887067276 hasConcept C33923547 @default.
- W2887067276 hasConcept C34445779 @default.
- W2887067276 hasConcept C509974204 @default.
- W2887067276 hasConcept C520434653 @default.
- W2887067276 hasConcept C54516573 @default.
- W2887067276 hasConcept C71924100 @default.
- W2887067276 hasConcept C75088862 @default.
- W2887067276 hasConceptScore W2887067276C105795698 @default.
- W2887067276 hasConceptScore W2887067276C120665830 @default.
- W2887067276 hasConceptScore W2887067276C121332964 @default.
- W2887067276 hasConceptScore W2887067276C126838900 @default.
- W2887067276 hasConceptScore W2887067276C152568617 @default.
- W2887067276 hasConceptScore W2887067276C170226646 @default.
- W2887067276 hasConceptScore W2887067276C185544564 @default.
- W2887067276 hasConceptScore W2887067276C19499675 @default.
- W2887067276 hasConceptScore W2887067276C201645570 @default.
- W2887067276 hasConceptScore W2887067276C2775881188 @default.
- W2887067276 hasConceptScore W2887067276C2779244869 @default.
- W2887067276 hasConceptScore W2887067276C2989005 @default.
- W2887067276 hasConceptScore W2887067276C33923547 @default.
- W2887067276 hasConceptScore W2887067276C34445779 @default.
- W2887067276 hasConceptScore W2887067276C509974204 @default.