Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887086576> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2887086576 endingPage "5309" @default.
- W2887086576 startingPage "5309" @default.
- W2887086576 abstract "Abstract To characterize a tumor and suggest appropriate treatments, pathologists rely on the visual assessment of histopathology slides as well as molecular profiling of the tumors. This is especially true in lung adenocarcinoma cases where targeted therapies exist for tumors with EGFR mutations. In this work, we studied the use of deep learning approaches to classify lung cancer histopathology images and predict the mutational status of frequently mutated genes. To achieve these tasks, more than 1600 scanned histopathology slides, obtained from TCGA, were separated into independent training, validation and test sets. They were then tiled into 512x512 pixel windows, and the training set was used to feed the inception v3 convolutional neural network developed by Google. The resulting model was evaluated on the test set, and the generated per-tile probabilities were aggregated to generate a per-slide classification score. We based our study on whole-slide images of adenocarcinoma, squamous cells carcinoma and normal lung tissues and the neural network was trained on several tasks: first, the goal was to identify normal from tumor regions, and then, once the tumor regions were identified, it was trained to identify adenocarcinoma versus squamous cell carcinoma. Finally, the neural network was trained predict the mutational status of the most frequently mutated genes in lung adenocarcinoma. After verifying that the trained network properly identifies tumor slides compared to normal tissue (AUC=0.99) and distinguishes adenocarcinomas from squamous cell carcinomas (AUC=0.95), the network was trained to simultaneously identify different mutations. It achieved AUC scores of 0.82 and 0.86 for STK11 and EGFR respectively, showing that mutations in these two genes may confer specific macroscopic features, visible in histopathology images, and that a deep convolutional neural network can be trained to recognize those features. Our results demonstrate that, given the availability of sufficient data, convolutional neural networks learn to perform complex diagnoses and thus assist pathologists in their work. Citation Format: Nicolas Coudray, Andre L. Moreira, Theodore Sakellaropoulos, David Fenyö, Narges Razavian, Aristotelis Tsirigos. Determining EGFR and STK11 mutational status in lung adenocarcinoma histopathology images using deep learning [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 5309." @default.
- W2887086576 created "2018-08-22" @default.
- W2887086576 creator A5000377703 @default.
- W2887086576 creator A5037786634 @default.
- W2887086576 creator A5051845185 @default.
- W2887086576 creator A5055117782 @default.
- W2887086576 creator A5065792746 @default.
- W2887086576 creator A5079997593 @default.
- W2887086576 date "2018-07-01" @default.
- W2887086576 modified "2023-09-26" @default.
- W2887086576 title "Abstract 5309: Determining EGFR and STK11 mutational status in lung adenocarcinoma histopathology images using deep learning" @default.
- W2887086576 doi "https://doi.org/10.1158/1538-7445.am2018-5309" @default.
- W2887086576 hasPublicationYear "2018" @default.
- W2887086576 type Work @default.
- W2887086576 sameAs 2887086576 @default.
- W2887086576 citedByCount "2" @default.
- W2887086576 countsByYear W28870865762019 @default.
- W2887086576 countsByYear W28870865762021 @default.
- W2887086576 crossrefType "journal-article" @default.
- W2887086576 hasAuthorship W2887086576A5000377703 @default.
- W2887086576 hasAuthorship W2887086576A5037786634 @default.
- W2887086576 hasAuthorship W2887086576A5051845185 @default.
- W2887086576 hasAuthorship W2887086576A5055117782 @default.
- W2887086576 hasAuthorship W2887086576A5065792746 @default.
- W2887086576 hasAuthorship W2887086576A5079997593 @default.
- W2887086576 hasConcept C121608353 @default.
- W2887086576 hasConcept C126322002 @default.
- W2887086576 hasConcept C142724271 @default.
- W2887086576 hasConcept C143998085 @default.
- W2887086576 hasConcept C154945302 @default.
- W2887086576 hasConcept C2776256026 @default.
- W2887086576 hasConcept C2781182431 @default.
- W2887086576 hasConcept C3019992690 @default.
- W2887086576 hasConcept C41008148 @default.
- W2887086576 hasConcept C544855455 @default.
- W2887086576 hasConcept C71924100 @default.
- W2887086576 hasConcept C81363708 @default.
- W2887086576 hasConceptScore W2887086576C121608353 @default.
- W2887086576 hasConceptScore W2887086576C126322002 @default.
- W2887086576 hasConceptScore W2887086576C142724271 @default.
- W2887086576 hasConceptScore W2887086576C143998085 @default.
- W2887086576 hasConceptScore W2887086576C154945302 @default.
- W2887086576 hasConceptScore W2887086576C2776256026 @default.
- W2887086576 hasConceptScore W2887086576C2781182431 @default.
- W2887086576 hasConceptScore W2887086576C3019992690 @default.
- W2887086576 hasConceptScore W2887086576C41008148 @default.
- W2887086576 hasConceptScore W2887086576C544855455 @default.
- W2887086576 hasConceptScore W2887086576C71924100 @default.
- W2887086576 hasConceptScore W2887086576C81363708 @default.
- W2887086576 hasIssue "13_Supplement" @default.
- W2887086576 hasLocation W28870865761 @default.
- W2887086576 hasOpenAccess W2887086576 @default.
- W2887086576 hasPrimaryLocation W28870865761 @default.
- W2887086576 hasRelatedWork W178012523 @default.
- W2887086576 hasRelatedWork W2050296896 @default.
- W2887086576 hasRelatedWork W2081322385 @default.
- W2887086576 hasRelatedWork W2354010214 @default.
- W2887086576 hasRelatedWork W2378150628 @default.
- W2887086576 hasRelatedWork W2394427899 @default.
- W2887086576 hasRelatedWork W2417994192 @default.
- W2887086576 hasRelatedWork W3197308857 @default.
- W2887086576 hasRelatedWork W3200167754 @default.
- W2887086576 hasRelatedWork W4320063089 @default.
- W2887086576 hasVolume "78" @default.
- W2887086576 isParatext "false" @default.
- W2887086576 isRetracted "false" @default.
- W2887086576 magId "2887086576" @default.
- W2887086576 workType "article" @default.