Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887173651> ?p ?o ?g. }
- W2887173651 abstract "Abstract Time series analysis is an important topic in machine learning and a suitable visualization method can be used to facilitate the work of data mining. In this paper, we propose E-Embed: a novel framework to visualize time series data by projecting them into a low-dimensional space while capturing the underlying data structure. In the E-Embed framework, we use discrete distributions to model time series and measure the distances between them by using earth mover’s distance (EMD). After the distances between time series are calculated, we can visualize the data by dimensionality reduction algorithms. To combine different dimensionality reduction methods (such as Isomap) that depend on K-nearest neighbor (KNN) graph effectively, we propose an algorithm for constructing a KNN graph based on the earth mover’s distance. We evaluate our visualization framework on both univariate time series data and multivariate time series data. Experimental results demonstrate that E-Embed can provide high quality visualization with low computational cost." @default.
- W2887173651 created "2018-08-22" @default.
- W2887173651 creator A5015057442 @default.
- W2887173651 creator A5019444857 @default.
- W2887173651 creator A5032148962 @default.
- W2887173651 date "2018-10-01" @default.
- W2887173651 modified "2023-10-16" @default.
- W2887173651 title "E-Embed: A time series visualization framework based on earth mover’s distance" @default.
- W2887173651 cites W116902681 @default.
- W2887173651 cites W143606607 @default.
- W2887173651 cites W1499049447 @default.
- W2887173651 cites W1511358834 @default.
- W2887173651 cites W1608675337 @default.
- W2887173651 cites W1823409095 @default.
- W2887173651 cites W1963822838 @default.
- W2887173651 cites W2000285770 @default.
- W2887173651 cites W2031323533 @default.
- W2887173651 cites W2038772909 @default.
- W2887173651 cites W2047046780 @default.
- W2887173651 cites W2049346399 @default.
- W2887173651 cites W2053744708 @default.
- W2887173651 cites W2086086639 @default.
- W2887173651 cites W2087544865 @default.
- W2887173651 cites W2091921805 @default.
- W2887173651 cites W2093402979 @default.
- W2887173651 cites W2128728535 @default.
- W2887173651 cites W2134524950 @default.
- W2887173651 cites W2147880780 @default.
- W2887173651 cites W2150695437 @default.
- W2887173651 cites W2161638904 @default.
- W2887173651 cites W2171235719 @default.
- W2887173651 cites W2187089797 @default.
- W2887173651 cites W2254589950 @default.
- W2887173651 cites W2363930004 @default.
- W2887173651 cites W2466552579 @default.
- W2887173651 cites W2949319506 @default.
- W2887173651 cites W3122153094 @default.
- W2887173651 doi "https://doi.org/10.1016/j.jvlc.2018.08.002" @default.
- W2887173651 hasPublicationYear "2018" @default.
- W2887173651 type Work @default.
- W2887173651 sameAs 2887173651 @default.
- W2887173651 citedByCount "0" @default.
- W2887173651 crossrefType "journal-article" @default.
- W2887173651 hasAuthorship W2887173651A5015057442 @default.
- W2887173651 hasAuthorship W2887173651A5019444857 @default.
- W2887173651 hasAuthorship W2887173651A5032148962 @default.
- W2887173651 hasConcept C111030470 @default.
- W2887173651 hasConcept C113238511 @default.
- W2887173651 hasConcept C11413529 @default.
- W2887173651 hasConcept C119857082 @default.
- W2887173651 hasConcept C124101348 @default.
- W2887173651 hasConcept C132525143 @default.
- W2887173651 hasConcept C143724316 @default.
- W2887173651 hasConcept C151406439 @default.
- W2887173651 hasConcept C151730666 @default.
- W2887173651 hasConcept C151876577 @default.
- W2887173651 hasConcept C154945302 @default.
- W2887173651 hasConcept C161584116 @default.
- W2887173651 hasConcept C172367668 @default.
- W2887173651 hasConcept C199163554 @default.
- W2887173651 hasConcept C2778626561 @default.
- W2887173651 hasConcept C36464697 @default.
- W2887173651 hasConcept C41008148 @default.
- W2887173651 hasConcept C70518039 @default.
- W2887173651 hasConcept C80444323 @default.
- W2887173651 hasConcept C82668687 @default.
- W2887173651 hasConcept C86803240 @default.
- W2887173651 hasConceptScore W2887173651C111030470 @default.
- W2887173651 hasConceptScore W2887173651C113238511 @default.
- W2887173651 hasConceptScore W2887173651C11413529 @default.
- W2887173651 hasConceptScore W2887173651C119857082 @default.
- W2887173651 hasConceptScore W2887173651C124101348 @default.
- W2887173651 hasConceptScore W2887173651C132525143 @default.
- W2887173651 hasConceptScore W2887173651C143724316 @default.
- W2887173651 hasConceptScore W2887173651C151406439 @default.
- W2887173651 hasConceptScore W2887173651C151730666 @default.
- W2887173651 hasConceptScore W2887173651C151876577 @default.
- W2887173651 hasConceptScore W2887173651C154945302 @default.
- W2887173651 hasConceptScore W2887173651C161584116 @default.
- W2887173651 hasConceptScore W2887173651C172367668 @default.
- W2887173651 hasConceptScore W2887173651C199163554 @default.
- W2887173651 hasConceptScore W2887173651C2778626561 @default.
- W2887173651 hasConceptScore W2887173651C36464697 @default.
- W2887173651 hasConceptScore W2887173651C41008148 @default.
- W2887173651 hasConceptScore W2887173651C70518039 @default.
- W2887173651 hasConceptScore W2887173651C80444323 @default.
- W2887173651 hasConceptScore W2887173651C82668687 @default.
- W2887173651 hasConceptScore W2887173651C86803240 @default.
- W2887173651 hasLocation W28871736511 @default.
- W2887173651 hasOpenAccess W2887173651 @default.
- W2887173651 hasPrimaryLocation W28871736511 @default.
- W2887173651 hasRelatedWork W2031209623 @default.
- W2887173651 hasRelatedWork W2075324066 @default.
- W2887173651 hasRelatedWork W2091300755 @default.
- W2887173651 hasRelatedWork W2098072631 @default.
- W2887173651 hasRelatedWork W2119700376 @default.
- W2887173651 hasRelatedWork W2520052763 @default.
- W2887173651 hasRelatedWork W2887173651 @default.
- W2887173651 hasRelatedWork W2897872374 @default.
- W2887173651 hasRelatedWork W3091859708 @default.