Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887183215> ?p ?o ?g. }
- W2887183215 endingPage "141" @default.
- W2887183215 startingPage "131" @default.
- W2887183215 abstract "Latent factor (LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse (HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers, which may consume many iterations to achieve a local optima, resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor (RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly. Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data. I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models." @default.
- W2887183215 created "2018-08-22" @default.
- W2887183215 creator A5010873564 @default.
- W2887183215 creator A5049385546 @default.
- W2887183215 creator A5062440909 @default.
- W2887183215 creator A5081318069 @default.
- W2887183215 creator A5088955392 @default.
- W2887183215 creator A5091667639 @default.
- W2887183215 date "2019-01-01" @default.
- W2887183215 modified "2023-10-06" @default.
- W2887183215 title "Randomized latent factor model for high-dimensional and sparse matrices from industrial applications" @default.
- W2887183215 cites W1492095519 @default.
- W2887183215 cites W1786513448 @default.
- W2887183215 cites W1873743981 @default.
- W2887183215 cites W1959608418 @default.
- W2887183215 cites W1961961749 @default.
- W2887183215 cites W1986278072 @default.
- W2887183215 cites W1999047234 @default.
- W2887183215 cites W2012638612 @default.
- W2887183215 cites W2035080386 @default.
- W2887183215 cites W2054141820 @default.
- W2887183215 cites W2056398894 @default.
- W2887183215 cites W2065851162 @default.
- W2887183215 cites W2090649417 @default.
- W2887183215 cites W2091381870 @default.
- W2887183215 cites W2093219534 @default.
- W2887183215 cites W2099970131 @default.
- W2887183215 cites W2101409192 @default.
- W2887183215 cites W2104185402 @default.
- W2887183215 cites W2111072639 @default.
- W2887183215 cites W2113802117 @default.
- W2887183215 cites W2119523409 @default.
- W2887183215 cites W2137245235 @default.
- W2887183215 cites W2143995004 @default.
- W2887183215 cites W2147392828 @default.
- W2887183215 cites W2166445532 @default.
- W2887183215 cites W2171960770 @default.
- W2887183215 cites W2273476706 @default.
- W2887183215 cites W2274753725 @default.
- W2887183215 cites W2278138779 @default.
- W2887183215 cites W2296319761 @default.
- W2887183215 cites W2301541953 @default.
- W2887183215 cites W2337334204 @default.
- W2887183215 cites W2344725271 @default.
- W2887183215 cites W2397487909 @default.
- W2887183215 cites W2463279551 @default.
- W2887183215 cites W2563738958 @default.
- W2887183215 cites W2586160710 @default.
- W2887183215 cites W2604493846 @default.
- W2887183215 cites W2606637053 @default.
- W2887183215 cites W2735318356 @default.
- W2887183215 cites W2750692136 @default.
- W2887183215 cites W2829536470 @default.
- W2887183215 cites W2901207739 @default.
- W2887183215 cites W3102249200 @default.
- W2887183215 doi "https://doi.org/10.1109/jas.2018.7511189" @default.
- W2887183215 hasPublicationYear "2019" @default.
- W2887183215 type Work @default.
- W2887183215 sameAs 2887183215 @default.
- W2887183215 citedByCount "93" @default.
- W2887183215 countsByYear W28871832152019 @default.
- W2887183215 countsByYear W28871832152020 @default.
- W2887183215 countsByYear W28871832152021 @default.
- W2887183215 countsByYear W28871832152022 @default.
- W2887183215 countsByYear W28871832152023 @default.
- W2887183215 crossrefType "journal-article" @default.
- W2887183215 hasAuthorship W2887183215A5010873564 @default.
- W2887183215 hasAuthorship W2887183215A5049385546 @default.
- W2887183215 hasAuthorship W2887183215A5062440909 @default.
- W2887183215 hasAuthorship W2887183215A5081318069 @default.
- W2887183215 hasAuthorship W2887183215A5088955392 @default.
- W2887183215 hasAuthorship W2887183215A5091667639 @default.
- W2887183215 hasConcept C106487976 @default.
- W2887183215 hasConcept C111919701 @default.
- W2887183215 hasConcept C119857082 @default.
- W2887183215 hasConcept C124101348 @default.
- W2887183215 hasConcept C151730666 @default.
- W2887183215 hasConcept C154945302 @default.
- W2887183215 hasConcept C159985019 @default.
- W2887183215 hasConcept C192562407 @default.
- W2887183215 hasConcept C199360897 @default.
- W2887183215 hasConcept C2779343474 @default.
- W2887183215 hasConcept C2781039887 @default.
- W2887183215 hasConcept C41008148 @default.
- W2887183215 hasConcept C50644808 @default.
- W2887183215 hasConcept C86803240 @default.
- W2887183215 hasConcept C98045186 @default.
- W2887183215 hasConceptScore W2887183215C106487976 @default.
- W2887183215 hasConceptScore W2887183215C111919701 @default.
- W2887183215 hasConceptScore W2887183215C119857082 @default.
- W2887183215 hasConceptScore W2887183215C124101348 @default.
- W2887183215 hasConceptScore W2887183215C151730666 @default.
- W2887183215 hasConceptScore W2887183215C154945302 @default.
- W2887183215 hasConceptScore W2887183215C159985019 @default.
- W2887183215 hasConceptScore W2887183215C192562407 @default.
- W2887183215 hasConceptScore W2887183215C199360897 @default.
- W2887183215 hasConceptScore W2887183215C2779343474 @default.
- W2887183215 hasConceptScore W2887183215C2781039887 @default.