Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887196013> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2887196013 endingPage "11" @default.
- W2887196013 startingPage "1" @default.
- W2887196013 abstract "Chest diseases are very serious health problems in the life of people. These diseases include chronic obstructive pulmonary disease, pneumonia, asthma, tuberculosis, and lung diseases. The timely diagnosis of chest diseases is very important. Many methods have been developed for this purpose. In this paper, we demonstrate the feasibility of classifying the chest pathologies in chest X-rays using conventional and deep learning approaches. In the paper, convolutional neural networks (CNNs) are presented for the diagnosis of chest diseases. The architecture of CNN and its design principle are presented. For comparative purpose, backpropagation neural networks (BPNNs) with supervised learning, competitive neural networks (CpNNs) with unsupervised learning are also constructed for diagnosis chest diseases. All the considered networks CNN, BPNN, and CpNN are trained and tested on the same chest X-ray database, and the performance of each network is discussed. Comparative results in terms of accuracy, error rate, and training time between the networks are presented." @default.
- W2887196013 created "2018-08-22" @default.
- W2887196013 creator A5009001723 @default.
- W2887196013 creator A5063556566 @default.
- W2887196013 date "2018-08-01" @default.
- W2887196013 modified "2023-10-03" @default.
- W2887196013 title "Deep Convolutional Neural Networks for Chest Diseases Detection" @default.
- W2887196013 cites W1992880811 @default.
- W2887196013 cites W1996211074 @default.
- W2887196013 cites W1996492324 @default.
- W2887196013 cites W1999234934 @default.
- W2887196013 cites W2028798134 @default.
- W2887196013 cites W2062210787 @default.
- W2887196013 cites W2088769703 @default.
- W2887196013 cites W2102104299 @default.
- W2887196013 cites W2117539524 @default.
- W2887196013 cites W2133533561 @default.
- W2887196013 cites W2136922672 @default.
- W2887196013 cites W2274227799 @default.
- W2887196013 cites W2276213063 @default.
- W2887196013 cites W2339885376 @default.
- W2887196013 cites W2592929672 @default.
- W2887196013 cites W2726343436 @default.
- W2887196013 cites W2741015411 @default.
- W2887196013 cites W2748806792 @default.
- W2887196013 cites W2759213214 @default.
- W2887196013 cites W2777980881 @default.
- W2887196013 cites W2919115771 @default.
- W2887196013 cites W2962949934 @default.
- W2887196013 cites W4232097126 @default.
- W2887196013 doi "https://doi.org/10.1155/2018/4168538" @default.
- W2887196013 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6093039" @default.
- W2887196013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30154989" @default.
- W2887196013 hasPublicationYear "2018" @default.
- W2887196013 type Work @default.
- W2887196013 sameAs 2887196013 @default.
- W2887196013 citedByCount "202" @default.
- W2887196013 countsByYear W28871960132018 @default.
- W2887196013 countsByYear W28871960132019 @default.
- W2887196013 countsByYear W28871960132020 @default.
- W2887196013 countsByYear W28871960132021 @default.
- W2887196013 countsByYear W28871960132022 @default.
- W2887196013 countsByYear W28871960132023 @default.
- W2887196013 crossrefType "journal-article" @default.
- W2887196013 hasAuthorship W2887196013A5009001723 @default.
- W2887196013 hasAuthorship W2887196013A5063556566 @default.
- W2887196013 hasBestOaLocation W28871960131 @default.
- W2887196013 hasConcept C108583219 @default.
- W2887196013 hasConcept C119857082 @default.
- W2887196013 hasConcept C126322002 @default.
- W2887196013 hasConcept C154945302 @default.
- W2887196013 hasConcept C155032097 @default.
- W2887196013 hasConcept C2777914695 @default.
- W2887196013 hasConcept C2778704086 @default.
- W2887196013 hasConcept C41008148 @default.
- W2887196013 hasConcept C50644808 @default.
- W2887196013 hasConcept C71924100 @default.
- W2887196013 hasConcept C81363708 @default.
- W2887196013 hasConceptScore W2887196013C108583219 @default.
- W2887196013 hasConceptScore W2887196013C119857082 @default.
- W2887196013 hasConceptScore W2887196013C126322002 @default.
- W2887196013 hasConceptScore W2887196013C154945302 @default.
- W2887196013 hasConceptScore W2887196013C155032097 @default.
- W2887196013 hasConceptScore W2887196013C2777914695 @default.
- W2887196013 hasConceptScore W2887196013C2778704086 @default.
- W2887196013 hasConceptScore W2887196013C41008148 @default.
- W2887196013 hasConceptScore W2887196013C50644808 @default.
- W2887196013 hasConceptScore W2887196013C71924100 @default.
- W2887196013 hasConceptScore W2887196013C81363708 @default.
- W2887196013 hasLocation W28871960131 @default.
- W2887196013 hasLocation W28871960132 @default.
- W2887196013 hasLocation W28871960133 @default.
- W2887196013 hasLocation W28871960134 @default.
- W2887196013 hasLocation W28871960135 @default.
- W2887196013 hasOpenAccess W2887196013 @default.
- W2887196013 hasPrimaryLocation W28871960131 @default.
- W2887196013 hasRelatedWork W2731899572 @default.
- W2887196013 hasRelatedWork W2999805992 @default.
- W2887196013 hasRelatedWork W3116150086 @default.
- W2887196013 hasRelatedWork W3133861977 @default.
- W2887196013 hasRelatedWork W4200173597 @default.
- W2887196013 hasRelatedWork W4223943233 @default.
- W2887196013 hasRelatedWork W4291897433 @default.
- W2887196013 hasRelatedWork W4312417841 @default.
- W2887196013 hasRelatedWork W4321369474 @default.
- W2887196013 hasRelatedWork W4380075502 @default.
- W2887196013 hasVolume "2018" @default.
- W2887196013 isParatext "false" @default.
- W2887196013 isRetracted "false" @default.
- W2887196013 magId "2887196013" @default.
- W2887196013 workType "article" @default.