Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887320778> ?p ?o ?g. }
- W2887320778 endingPage "5575" @default.
- W2887320778 startingPage "5563" @default.
- W2887320778 abstract "Precipitation is one of the most important factors determining the occurrence of extreme hydro‐meteorological events and water resource availability. Precipitation in different grades has diverse ecological effects, and slight precipitation (SP, defined as 0.1–1.0 mm/day) is the minimal level among them. In this study, we investigated SP trends from 1961 to 2013, as well as the relationship between SP and advanced very high radiometric resolution (AVHRR) normalized difference vegetation index (NDVI) in China during growing season from 1981 to 2006. The distributions and trends of SP were analysed by calculating the daily precipitation data. The average annual slight precipitation amount (SPA) and the number of slight precipitation days (SPD), derived from 839 monitoring stations in China, show a decreasing trend over the last five decades, which is in agreement with total precipitation (TP) but in different rates. When the trend was analysed seasonally, SP in most stations decreases significantly in September–October–November (SON) and June–July–August (JJA), and the largest decrease is found in SON. About 49.5 and 68.7% of monitoring stations show a decreasing trend in SON, in both SPA and SPD, whereas the trend is less popular in March–April–May (MAM, SPA: 19.7%, SPD: 41.4%) and December–January–February (JJF, SPA: 25.6%, SPD: 43.1%). Moreover, our analysis indicates that the decrease of SP is mainly due to the decrease of SPD as the median amount of daily SP was unchanged over the past five decades (close to 0.3 mm/day). Based on 26‐year (1981–2006) semi‐monthly AVHRR NDVI data and the records of SP data, the relationship between AVHRR NDVI and SP was also investigated. In regions with lower (<600 mm) TP, the correlation coefficients between NDVI and SP tend to be higher. These results highlight that SP has different effects than TP on vegetation growth. We also analysed time lag effects and concluded that the sensitivity of NDVI to SP for grass vegetation (the correlation coefficient is 0.327) is more noticeable than for trees (0.211) or shrubs (−0.058). The relationship between SP and NDVI also provides us new insights on the dependence of vegetation growth on meteorological factors." @default.
- W2887320778 created "2018-08-22" @default.
- W2887320778 creator A5000033522 @default.
- W2887320778 creator A5011809404 @default.
- W2887320778 creator A5024541563 @default.
- W2887320778 creator A5025961370 @default.
- W2887320778 creator A5042906714 @default.
- W2887320778 creator A5045945656 @default.
- W2887320778 creator A5055611804 @default.
- W2887320778 creator A5060854826 @default.
- W2887320778 creator A5062044999 @default.
- W2887320778 creator A5064033418 @default.
- W2887320778 creator A5070378593 @default.
- W2887320778 creator A5086813528 @default.
- W2887320778 creator A5090518172 @default.
- W2887320778 date "2018-08-14" @default.
- W2887320778 modified "2023-10-13" @default.
- W2887320778 title "Analysis of slight precipitation in China during the past decades and its relationship with advanced very high radiometric resolution normalized difference vegetation index" @default.
- W2887320778 cites W1556923877 @default.
- W2887320778 cites W18817274 @default.
- W2887320778 cites W1970103377 @default.
- W2887320778 cites W1970789322 @default.
- W2887320778 cites W1974209761 @default.
- W2887320778 cites W1990032228 @default.
- W2887320778 cites W1997532610 @default.
- W2887320778 cites W2000257837 @default.
- W2887320778 cites W2003314671 @default.
- W2887320778 cites W2014725859 @default.
- W2887320778 cites W2031675844 @default.
- W2887320778 cites W2038917393 @default.
- W2887320778 cites W2050740248 @default.
- W2887320778 cites W2050905361 @default.
- W2887320778 cites W2061618897 @default.
- W2887320778 cites W2071485587 @default.
- W2887320778 cites W2075083406 @default.
- W2887320778 cites W2077980346 @default.
- W2887320778 cites W2089551191 @default.
- W2887320778 cites W2094049607 @default.
- W2887320778 cites W2097960263 @default.
- W2887320778 cites W2134645526 @default.
- W2887320778 cites W2137784250 @default.
- W2887320778 cites W2138644576 @default.
- W2887320778 cites W2146864426 @default.
- W2887320778 cites W2148655588 @default.
- W2887320778 cites W2165651530 @default.
- W2887320778 cites W2328573691 @default.
- W2887320778 cites W2330165111 @default.
- W2887320778 cites W2349428346 @default.
- W2887320778 cites W2648126668 @default.
- W2887320778 cites W3124293414 @default.
- W2887320778 cites W4252918998 @default.
- W2887320778 doi "https://doi.org/10.1002/joc.5763" @default.
- W2887320778 hasPublicationYear "2018" @default.
- W2887320778 type Work @default.
- W2887320778 sameAs 2887320778 @default.
- W2887320778 citedByCount "1" @default.
- W2887320778 countsByYear W28873207782021 @default.
- W2887320778 crossrefType "journal-article" @default.
- W2887320778 hasAuthorship W2887320778A5000033522 @default.
- W2887320778 hasAuthorship W2887320778A5011809404 @default.
- W2887320778 hasAuthorship W2887320778A5024541563 @default.
- W2887320778 hasAuthorship W2887320778A5025961370 @default.
- W2887320778 hasAuthorship W2887320778A5042906714 @default.
- W2887320778 hasAuthorship W2887320778A5045945656 @default.
- W2887320778 hasAuthorship W2887320778A5055611804 @default.
- W2887320778 hasAuthorship W2887320778A5060854826 @default.
- W2887320778 hasAuthorship W2887320778A5062044999 @default.
- W2887320778 hasAuthorship W2887320778A5064033418 @default.
- W2887320778 hasAuthorship W2887320778A5070378593 @default.
- W2887320778 hasAuthorship W2887320778A5086813528 @default.
- W2887320778 hasAuthorship W2887320778A5090518172 @default.
- W2887320778 hasBestOaLocation W28873207782 @default.
- W2887320778 hasConcept C100970517 @default.
- W2887320778 hasConcept C105795698 @default.
- W2887320778 hasConcept C107054158 @default.
- W2887320778 hasConcept C127142870 @default.
- W2887320778 hasConcept C127313418 @default.
- W2887320778 hasConcept C132651083 @default.
- W2887320778 hasConcept C137660486 @default.
- W2887320778 hasConcept C142724271 @default.
- W2887320778 hasConcept C153294291 @default.
- W2887320778 hasConcept C1549246 @default.
- W2887320778 hasConcept C166957645 @default.
- W2887320778 hasConcept C18903297 @default.
- W2887320778 hasConcept C191935318 @default.
- W2887320778 hasConcept C205649164 @default.
- W2887320778 hasConcept C2776133958 @default.
- W2887320778 hasConcept C3020199158 @default.
- W2887320778 hasConcept C33923547 @default.
- W2887320778 hasConcept C39432304 @default.
- W2887320778 hasConcept C49204034 @default.
- W2887320778 hasConcept C62649853 @default.
- W2887320778 hasConcept C71924100 @default.
- W2887320778 hasConcept C86803240 @default.
- W2887320778 hasConcept C91586092 @default.
- W2887320778 hasConceptScore W2887320778C100970517 @default.
- W2887320778 hasConceptScore W2887320778C105795698 @default.
- W2887320778 hasConceptScore W2887320778C107054158 @default.