Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887377763> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2887377763 endingPage "1726" @default.
- W2887377763 startingPage "1711" @default.
- W2887377763 abstract "Purpose Three adjustment modes are alternatives for mixed-model assembly lines (MMALs) to improve their production plans according to constantly changing customer requirements. The purpose of this paper is to deal with the decision-making problem between these modes by proposing a novel multi-classification method. This method recommends appropriate adjustment modes for the assembly lines faced with different customer orders through machine learning from historical data. Design/methodology/approach The decision-making method uses the classification model composed of an input layer, two intermediate layers and an output layer. The input layer describes the assembly line in a knowledge-intensive manner by presenting the impact degrees of production parameters on line performances. The first intermediate layer provides the support vector data description (SVDD) of each adjustment mode through historical data training. The second intermediate layer employs the Dempster–Shafer (D–S) theory to combine the posterior classification possibilities generated from different SVDDs. The output layer gives the adjustment mode with the maximum posterior possibility as the classification result according to Bayesian decision theory. Findings The proposed method achieves higher classification accuracies than the support vector machine methods and the traditional SVDD method in the numerical test consisting of data sets from the machine-learning repository and the case study of a diesel engine assembly line. Practical implications This research recommends appropriate adjustment modes for MMALs in response to customer demand changes. According to the suggested adjustment mode, the managers can improve the line performance more effectively by using the well-designed optimization methods for a specific scope. Originality/value The adjustment mode decision belongs to the multi-classification problem featured with limited historical data. Although traditional SVDD methods can solve these problems by providing the posterior possibility of each classification result, they might have poor classification accuracies owing to the conflicts and uncertainties of these possibilities. This paper develops a novel classification model that integrates the SVDD method with the D–S theory. By handling the conflicts and uncertainties appropriately, this model achieves higher classification accuracies than traditional methods." @default.
- W2887377763 created "2018-08-22" @default.
- W2887377763 creator A5020124916 @default.
- W2887377763 creator A5054830882 @default.
- W2887377763 creator A5056025791 @default.
- W2887377763 creator A5073501391 @default.
- W2887377763 date "2018-08-17" @default.
- W2887377763 modified "2023-09-25" @default.
- W2887377763 title "Adjustment mode decision based on support vector data description and evidence theory for assembly lines" @default.
- W2887377763 cites W1505004680 @default.
- W2887377763 cites W1546514372 @default.
- W2887377763 cites W1582979344 @default.
- W2887377763 cites W1589623824 @default.
- W2887377763 cites W1963620028 @default.
- W2887377763 cites W1966846152 @default.
- W2887377763 cites W1969136046 @default.
- W2887377763 cites W1970088130 @default.
- W2887377763 cites W1971165078 @default.
- W2887377763 cites W1981966284 @default.
- W2887377763 cites W1993646956 @default.
- W2887377763 cites W2000728417 @default.
- W2887377763 cites W2011042477 @default.
- W2887377763 cites W2018247223 @default.
- W2887377763 cites W2018487812 @default.
- W2887377763 cites W2029393109 @default.
- W2887377763 cites W2030509460 @default.
- W2887377763 cites W2030717915 @default.
- W2887377763 cites W2042275431 @default.
- W2887377763 cites W2043347193 @default.
- W2887377763 cites W2048598794 @default.
- W2887377763 cites W2049655667 @default.
- W2887377763 cites W2062353757 @default.
- W2887377763 cites W2075494703 @default.
- W2887377763 cites W2075638721 @default.
- W2887377763 cites W2121042048 @default.
- W2887377763 cites W2121317287 @default.
- W2887377763 cites W2139824765 @default.
- W2887377763 cites W2143023429 @default.
- W2887377763 cites W2163816481 @default.
- W2887377763 cites W2166787113 @default.
- W2887377763 cites W2172000360 @default.
- W2887377763 doi "https://doi.org/10.1108/imds-01-2017-0014" @default.
- W2887377763 hasPublicationYear "2018" @default.
- W2887377763 type Work @default.
- W2887377763 sameAs 2887377763 @default.
- W2887377763 citedByCount "2" @default.
- W2887377763 countsByYear W28873777632019 @default.
- W2887377763 countsByYear W28873777632020 @default.
- W2887377763 crossrefType "journal-article" @default.
- W2887377763 hasAuthorship W2887377763A5020124916 @default.
- W2887377763 hasAuthorship W2887377763A5054830882 @default.
- W2887377763 hasAuthorship W2887377763A5056025791 @default.
- W2887377763 hasAuthorship W2887377763A5073501391 @default.
- W2887377763 hasConcept C111919701 @default.
- W2887377763 hasConcept C119857082 @default.
- W2887377763 hasConcept C12267149 @default.
- W2887377763 hasConcept C124101348 @default.
- W2887377763 hasConcept C127413603 @default.
- W2887377763 hasConcept C13736549 @default.
- W2887377763 hasConcept C154945302 @default.
- W2887377763 hasConcept C178790620 @default.
- W2887377763 hasConcept C185592680 @default.
- W2887377763 hasConcept C2779227376 @default.
- W2887377763 hasConcept C41008148 @default.
- W2887377763 hasConcept C42475967 @default.
- W2887377763 hasConcept C48677424 @default.
- W2887377763 hasConceptScore W2887377763C111919701 @default.
- W2887377763 hasConceptScore W2887377763C119857082 @default.
- W2887377763 hasConceptScore W2887377763C12267149 @default.
- W2887377763 hasConceptScore W2887377763C124101348 @default.
- W2887377763 hasConceptScore W2887377763C127413603 @default.
- W2887377763 hasConceptScore W2887377763C13736549 @default.
- W2887377763 hasConceptScore W2887377763C154945302 @default.
- W2887377763 hasConceptScore W2887377763C178790620 @default.
- W2887377763 hasConceptScore W2887377763C185592680 @default.
- W2887377763 hasConceptScore W2887377763C2779227376 @default.
- W2887377763 hasConceptScore W2887377763C41008148 @default.
- W2887377763 hasConceptScore W2887377763C42475967 @default.
- W2887377763 hasConceptScore W2887377763C48677424 @default.
- W2887377763 hasIssue "8" @default.
- W2887377763 hasLocation W28873777631 @default.
- W2887377763 hasOpenAccess W2887377763 @default.
- W2887377763 hasPrimaryLocation W28873777631 @default.
- W2887377763 hasRelatedWork W1996541855 @default.
- W2887377763 hasRelatedWork W2101819884 @default.
- W2887377763 hasRelatedWork W2803710604 @default.
- W2887377763 hasRelatedWork W2937631562 @default.
- W2887377763 hasRelatedWork W2979979539 @default.
- W2887377763 hasRelatedWork W3136979370 @default.
- W2887377763 hasRelatedWork W3194539120 @default.
- W2887377763 hasRelatedWork W3195168932 @default.
- W2887377763 hasRelatedWork W4205958290 @default.
- W2887377763 hasRelatedWork W4361795583 @default.
- W2887377763 hasVolume "118" @default.
- W2887377763 isParatext "false" @default.
- W2887377763 isRetracted "false" @default.
- W2887377763 magId "2887377763" @default.
- W2887377763 workType "article" @default.