Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887442076> ?p ?o ?g. }
- W2887442076 endingPage "e1006369" @default.
- W2887442076 startingPage "e1006369" @default.
- W2887442076 abstract "Gene co-expression network analysis is extremely useful in interpreting a complex biological process. The recent droplet-based single-cell technology is able to generate much larger gene expression data routinely with thousands of samples and tens of thousands of genes. To analyze such a large-scale gene-gene network, remarkable progress has been made in rigorous statistical inference of high-dimensional Gaussian graphical model (GGM). These approaches provide a formal confidence interval or a p-value rather than only a single point estimator for conditional dependence of a gene pair and are more desirable for identifying reliable gene networks. To promote their widespread use, we herein introduce an extensive and efficient R package named SILGGM (Statistical Inference of Large-scale Gaussian Graphical Model) that includes four main approaches in statistical inference of high-dimensional GGM. Unlike the existing tools, SILGGM provides statistically efficient inference on both individual gene pair and whole-scale gene pairs. It has a novel and consistent false discovery rate (FDR) procedure in all four methodologies. Based on the user-friendly design, it provides outputs compatible with multiple platforms for interactive network visualization. Furthermore, comparisons in simulation illustrate that SILGGM can accelerate the existing MATLAB implementation to several orders of magnitudes and further improve the speed of the already very efficient R package FastGGM. Testing results from the simulated data confirm the validity of all the approaches in SILGGM even in a very large-scale setting with the number of variables or genes to a ten thousand level. We have also applied our package to a novel single-cell RNA-seq data set with pan T cells. The results show that the approaches in SILGGM significantly outperform the conventional ones in a biological sense. The package is freely available via CRAN at https://cran.r-project.org/package=SILGGM." @default.
- W2887442076 created "2018-08-22" @default.
- W2887442076 creator A5017541508 @default.
- W2887442076 creator A5063262277 @default.
- W2887442076 creator A5083967189 @default.
- W2887442076 date "2018-08-13" @default.
- W2887442076 modified "2023-09-26" @default.
- W2887442076 title "SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks" @default.
- W2887442076 cites W1508717233 @default.
- W2887442076 cites W1527463082 @default.
- W2887442076 cites W1716904016 @default.
- W2887442076 cites W1823837540 @default.
- W2887442076 cites W1966327575 @default.
- W2887442076 cites W1990551862 @default.
- W2887442076 cites W2008620264 @default.
- W2887442076 cites W2015554529 @default.
- W2887442076 cites W2033527355 @default.
- W2887442076 cites W2039956473 @default.
- W2887442076 cites W2044600950 @default.
- W2887442076 cites W2063978378 @default.
- W2887442076 cites W2072478189 @default.
- W2887442076 cites W2074360197 @default.
- W2887442076 cites W2081746825 @default.
- W2887442076 cites W2084916894 @default.
- W2887442076 cites W2084942072 @default.
- W2887442076 cites W2097360283 @default.
- W2887442076 cites W2099480878 @default.
- W2887442076 cites W2100471807 @default.
- W2887442076 cites W2102212449 @default.
- W2887442076 cites W2122261046 @default.
- W2887442076 cites W2125156589 @default.
- W2887442076 cites W2132555912 @default.
- W2887442076 cites W2152135248 @default.
- W2887442076 cites W2159325249 @default.
- W2887442076 cites W2159675211 @default.
- W2887442076 cites W2162142896 @default.
- W2887442076 cites W2163480486 @default.
- W2887442076 cites W2263654784 @default.
- W2887442076 cites W2514161540 @default.
- W2887442076 cites W2593512700 @default.
- W2887442076 cites W2951506174 @default.
- W2887442076 cites W2964074174 @default.
- W2887442076 cites W3008266953 @default.
- W2887442076 cites W3098834468 @default.
- W2887442076 cites W3103042558 @default.
- W2887442076 cites W3103362336 @default.
- W2887442076 cites W3114411530 @default.
- W2887442076 cites W4253759977 @default.
- W2887442076 cites W4294541781 @default.
- W2887442076 doi "https://doi.org/10.1371/journal.pcbi.1006369" @default.
- W2887442076 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6107288" @default.
- W2887442076 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30102702" @default.
- W2887442076 hasPublicationYear "2018" @default.
- W2887442076 type Work @default.
- W2887442076 sameAs 2887442076 @default.
- W2887442076 citedByCount "35" @default.
- W2887442076 countsByYear W28874420762019 @default.
- W2887442076 countsByYear W28874420762020 @default.
- W2887442076 countsByYear W28874420762021 @default.
- W2887442076 countsByYear W28874420762022 @default.
- W2887442076 countsByYear W28874420762023 @default.
- W2887442076 crossrefType "journal-article" @default.
- W2887442076 hasAuthorship W2887442076A5017541508 @default.
- W2887442076 hasAuthorship W2887442076A5063262277 @default.
- W2887442076 hasAuthorship W2887442076A5083967189 @default.
- W2887442076 hasBestOaLocation W28874420761 @default.
- W2887442076 hasConcept C104317684 @default.
- W2887442076 hasConcept C105795698 @default.
- W2887442076 hasConcept C119857082 @default.
- W2887442076 hasConcept C121332964 @default.
- W2887442076 hasConcept C124101348 @default.
- W2887442076 hasConcept C134261354 @default.
- W2887442076 hasConcept C150194340 @default.
- W2887442076 hasConcept C154945302 @default.
- W2887442076 hasConcept C155846161 @default.
- W2887442076 hasConcept C163716315 @default.
- W2887442076 hasConcept C185429906 @default.
- W2887442076 hasConcept C2776214188 @default.
- W2887442076 hasConcept C2778755073 @default.
- W2887442076 hasConcept C2984074130 @default.
- W2887442076 hasConcept C33923547 @default.
- W2887442076 hasConcept C41008148 @default.
- W2887442076 hasConcept C459310 @default.
- W2887442076 hasConcept C54355233 @default.
- W2887442076 hasConcept C62520636 @default.
- W2887442076 hasConcept C67339327 @default.
- W2887442076 hasConcept C70721500 @default.
- W2887442076 hasConcept C86803240 @default.
- W2887442076 hasConcept C87007009 @default.
- W2887442076 hasConceptScore W2887442076C104317684 @default.
- W2887442076 hasConceptScore W2887442076C105795698 @default.
- W2887442076 hasConceptScore W2887442076C119857082 @default.
- W2887442076 hasConceptScore W2887442076C121332964 @default.
- W2887442076 hasConceptScore W2887442076C124101348 @default.
- W2887442076 hasConceptScore W2887442076C134261354 @default.
- W2887442076 hasConceptScore W2887442076C150194340 @default.
- W2887442076 hasConceptScore W2887442076C154945302 @default.
- W2887442076 hasConceptScore W2887442076C155846161 @default.