Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887493032> ?p ?o ?g. }
- W2887493032 abstract "Data-driven discovery of hidden -- i.e., machine learning of differential equation models underlying observed data -- has recently been approached by embedding the discovery problem into a Gaussian Process regression of spatial data, treating and discovering unknown equation parameters as hyperparameters of a modified physics informed Gaussian Process kernel. This kernel includes the parametrized differential operators applied to a prior covariance kernel. We extend this framework to linear space-fractional differential equations. The methodology is compatible with a wide variety of fractional operators in $mathbb{R}^d$ and stationary covariance kernels, including the Matern class, and can optimize the Matern parameter during training. We provide a user-friendly and feasible way to perform fractional derivatives of kernels, via a unified set of d-dimensional Fourier integral formulas amenable to generalized Gauss-Laguerre quadrature. The implementation of fractional derivatives has several benefits. First, it allows for discovering fractional-order PDEs for systems characterized by heavy tails or anomalous diffusion, bypassing the analytical difficulty of fractional calculus. Data sets exhibiting such features are of increasing prevalence in physical and financial domains. Second, a single fractional-order archetype allows for a derivative of arbitrary order to be learned, with the order itself being a parameter in the regression. This is advantageous even when used for discovering integer-order equations; the user is not required to assume a dictionary of derivatives of various orders, and directly controls the parsimony of the models being discovered. We illustrate on several examples, including fractional-order interpolation of advection-diffusion and modeling relative stock performance in the S&P 500 with alpha-stable motion via a fractional diffusion equation." @default.
- W2887493032 created "2018-08-22" @default.
- W2887493032 creator A5002562845 @default.
- W2887493032 creator A5009658255 @default.
- W2887493032 creator A5012536010 @default.
- W2887493032 creator A5012880865 @default.
- W2887493032 date "2018-08-02" @default.
- W2887493032 modified "2023-09-27" @default.
- W2887493032 title "Machine Learning of Space-Fractional Differential Equations" @default.
- W2887493032 cites W1488607660 @default.
- W2887493032 cites W1499969990 @default.
- W2887493032 cites W1526265566 @default.
- W2887493032 cites W1534638135 @default.
- W2887493032 cites W1570448133 @default.
- W2887493032 cites W164706946 @default.
- W2887493032 cites W1971642354 @default.
- W2887493032 cites W1979769287 @default.
- W2887493032 cites W2020930183 @default.
- W2887493032 cites W2076209196 @default.
- W2887493032 cites W2089587982 @default.
- W2887493032 cites W2090637028 @default.
- W2887493032 cites W2093828424 @default.
- W2887493032 cites W2111271983 @default.
- W2887493032 cites W2133730794 @default.
- W2887493032 cites W2142995921 @default.
- W2887493032 cites W2149498546 @default.
- W2887493032 cites W2168464387 @default.
- W2887493032 cites W2239232218 @default.
- W2887493032 cites W2507348356 @default.
- W2887493032 cites W2525748878 @default.
- W2887493032 cites W2573864470 @default.
- W2887493032 cites W2605147767 @default.
- W2887493032 cites W2613146443 @default.
- W2887493032 cites W2740626026 @default.
- W2887493032 cites W2745110207 @default.
- W2887493032 cites W2765872171 @default.
- W2887493032 cites W2772097715 @default.
- W2887493032 cites W2782210340 @default.
- W2887493032 cites W2785762403 @default.
- W2887493032 cites W2952677397 @default.
- W2887493032 cites W2963112935 @default.
- W2887493032 cites W3043924052 @default.
- W2887493032 cites W3103444582 @default.
- W2887493032 cites W3134481478 @default.
- W2887493032 cites W642707038 @default.
- W2887493032 cites W3122936008 @default.
- W2887493032 hasPublicationYear "2018" @default.
- W2887493032 type Work @default.
- W2887493032 sameAs 2887493032 @default.
- W2887493032 citedByCount "1" @default.
- W2887493032 countsByYear W28874930322019 @default.
- W2887493032 crossrefType "posted-content" @default.
- W2887493032 hasAuthorship W2887493032A5002562845 @default.
- W2887493032 hasAuthorship W2887493032A5009658255 @default.
- W2887493032 hasAuthorship W2887493032A5012536010 @default.
- W2887493032 hasAuthorship W2887493032A5012880865 @default.
- W2887493032 hasConcept C105795698 @default.
- W2887493032 hasConcept C118615104 @default.
- W2887493032 hasConcept C121332964 @default.
- W2887493032 hasConcept C126255220 @default.
- W2887493032 hasConcept C154249771 @default.
- W2887493032 hasConcept C163716315 @default.
- W2887493032 hasConcept C178650346 @default.
- W2887493032 hasConcept C28826006 @default.
- W2887493032 hasConcept C33923547 @default.
- W2887493032 hasConcept C61326573 @default.
- W2887493032 hasConcept C62520636 @default.
- W2887493032 hasConcept C74193536 @default.
- W2887493032 hasConceptScore W2887493032C105795698 @default.
- W2887493032 hasConceptScore W2887493032C118615104 @default.
- W2887493032 hasConceptScore W2887493032C121332964 @default.
- W2887493032 hasConceptScore W2887493032C126255220 @default.
- W2887493032 hasConceptScore W2887493032C154249771 @default.
- W2887493032 hasConceptScore W2887493032C163716315 @default.
- W2887493032 hasConceptScore W2887493032C178650346 @default.
- W2887493032 hasConceptScore W2887493032C28826006 @default.
- W2887493032 hasConceptScore W2887493032C33923547 @default.
- W2887493032 hasConceptScore W2887493032C61326573 @default.
- W2887493032 hasConceptScore W2887493032C62520636 @default.
- W2887493032 hasConceptScore W2887493032C74193536 @default.
- W2887493032 hasLocation W28874930321 @default.
- W2887493032 hasOpenAccess W2887493032 @default.
- W2887493032 hasPrimaryLocation W28874930321 @default.
- W2887493032 hasRelatedWork W1964974227 @default.
- W2887493032 hasRelatedWork W2019493922 @default.
- W2887493032 hasRelatedWork W2026288777 @default.
- W2887493032 hasRelatedWork W2088993232 @default.
- W2887493032 hasRelatedWork W2149775970 @default.
- W2887493032 hasRelatedWork W2320819545 @default.
- W2887493032 hasRelatedWork W2364662824 @default.
- W2887493032 hasRelatedWork W2473496969 @default.
- W2887493032 hasRelatedWork W2537314584 @default.
- W2887493032 hasRelatedWork W2891590611 @default.
- W2887493032 hasRelatedWork W2949155892 @default.
- W2887493032 hasRelatedWork W2949293583 @default.
- W2887493032 hasRelatedWork W2963008719 @default.
- W2887493032 hasRelatedWork W3028316595 @default.
- W2887493032 hasRelatedWork W3170945357 @default.
- W2887493032 hasRelatedWork W317185899 @default.
- W2887493032 hasRelatedWork W3181080297 @default.