Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887493766> ?p ?o ?g. }
- W2887493766 endingPage "775" @default.
- W2887493766 startingPage "767" @default.
- W2887493766 abstract "Clinical translation of scientific discoveries from bench to bedside is typically a challenging process with sporadic progress along its trajectory. Analyzing R&D can provide key intelligence on advancing biomedical innovation in target domains of interest. In this study, we explore the feasibility of using a streamlined tech mining approach for identification of translational indicators and potential opportunities, using observable markers extracted from selected research literature. We apply this strategy to analyze a set of 23,982 PubMed records that involved gold nanostructures (GNSs) research. Nine indicators are generated to assess what different GNSs research activities had achieved and to predict where GNSs research will likely go. We believe such analysis can provide useful translation intelligence for researchers, funding agencies, and pharmaceutical and biotech companies." @default.
- W2887493766 created "2018-08-22" @default.
- W2887493766 creator A5017467540 @default.
- W2887493766 creator A5019651281 @default.
- W2887493766 creator A5021347840 @default.
- W2887493766 creator A5050142805 @default.
- W2887493766 creator A5089998406 @default.
- W2887493766 date "2019-09-01" @default.
- W2887493766 modified "2023-10-17" @default.
- W2887493766 title "Identifying translational indicators and technology opportunities for nanomedical research using tech mining: The case of gold nanostructures" @default.
- W2887493766 cites W1570637627 @default.
- W2887493766 cites W1971824745 @default.
- W2887493766 cites W1972180606 @default.
- W2887493766 cites W1978094989 @default.
- W2887493766 cites W1979104937 @default.
- W2887493766 cites W1989704041 @default.
- W2887493766 cites W1992760964 @default.
- W2887493766 cites W1993187818 @default.
- W2887493766 cites W1994661242 @default.
- W2887493766 cites W1995200506 @default.
- W2887493766 cites W1999801985 @default.
- W2887493766 cites W2000039169 @default.
- W2887493766 cites W2001902090 @default.
- W2887493766 cites W2008073195 @default.
- W2887493766 cites W2016866273 @default.
- W2887493766 cites W2026417691 @default.
- W2887493766 cites W2035063736 @default.
- W2887493766 cites W2036935277 @default.
- W2887493766 cites W2038301190 @default.
- W2887493766 cites W2039688703 @default.
- W2887493766 cites W2045623031 @default.
- W2887493766 cites W2079908882 @default.
- W2887493766 cites W2082902103 @default.
- W2887493766 cites W2097269731 @default.
- W2887493766 cites W2101900104 @default.
- W2887493766 cites W2106585217 @default.
- W2887493766 cites W2110341912 @default.
- W2887493766 cites W2140879304 @default.
- W2887493766 cites W2142149055 @default.
- W2887493766 cites W2144836956 @default.
- W2887493766 cites W2154454189 @default.
- W2887493766 cites W2169918010 @default.
- W2887493766 cites W2212494754 @default.
- W2887493766 cites W2256578089 @default.
- W2887493766 cites W2266752991 @default.
- W2887493766 cites W2341135196 @default.
- W2887493766 cites W2344644350 @default.
- W2887493766 cites W2411920841 @default.
- W2887493766 cites W2607927467 @default.
- W2887493766 cites W4239510810 @default.
- W2887493766 doi "https://doi.org/10.1016/j.techfore.2018.08.002" @default.
- W2887493766 hasPublicationYear "2019" @default.
- W2887493766 type Work @default.
- W2887493766 sameAs 2887493766 @default.
- W2887493766 citedByCount "16" @default.
- W2887493766 countsByYear W28874937662020 @default.
- W2887493766 countsByYear W28874937662021 @default.
- W2887493766 countsByYear W28874937662022 @default.
- W2887493766 countsByYear W28874937662023 @default.
- W2887493766 crossrefType "journal-article" @default.
- W2887493766 hasAuthorship W2887493766A5017467540 @default.
- W2887493766 hasAuthorship W2887493766A5019651281 @default.
- W2887493766 hasAuthorship W2887493766A5021347840 @default.
- W2887493766 hasAuthorship W2887493766A5050142805 @default.
- W2887493766 hasAuthorship W2887493766A5089998406 @default.
- W2887493766 hasBestOaLocation W28874937661 @default.
- W2887493766 hasConcept C111919701 @default.
- W2887493766 hasConcept C116834253 @default.
- W2887493766 hasConcept C128544194 @default.
- W2887493766 hasConcept C142724271 @default.
- W2887493766 hasConcept C14279187 @default.
- W2887493766 hasConcept C171250308 @default.
- W2887493766 hasConcept C192562407 @default.
- W2887493766 hasConcept C2522767166 @default.
- W2887493766 hasConcept C41008148 @default.
- W2887493766 hasConcept C59822182 @default.
- W2887493766 hasConcept C60229501 @default.
- W2887493766 hasConcept C71924100 @default.
- W2887493766 hasConcept C76155785 @default.
- W2887493766 hasConcept C86803240 @default.
- W2887493766 hasConcept C98045186 @default.
- W2887493766 hasConceptScore W2887493766C111919701 @default.
- W2887493766 hasConceptScore W2887493766C116834253 @default.
- W2887493766 hasConceptScore W2887493766C128544194 @default.
- W2887493766 hasConceptScore W2887493766C142724271 @default.
- W2887493766 hasConceptScore W2887493766C14279187 @default.
- W2887493766 hasConceptScore W2887493766C171250308 @default.
- W2887493766 hasConceptScore W2887493766C192562407 @default.
- W2887493766 hasConceptScore W2887493766C2522767166 @default.
- W2887493766 hasConceptScore W2887493766C41008148 @default.
- W2887493766 hasConceptScore W2887493766C59822182 @default.
- W2887493766 hasConceptScore W2887493766C60229501 @default.
- W2887493766 hasConceptScore W2887493766C71924100 @default.
- W2887493766 hasConceptScore W2887493766C76155785 @default.
- W2887493766 hasConceptScore W2887493766C86803240 @default.
- W2887493766 hasConceptScore W2887493766C98045186 @default.
- W2887493766 hasFunder F4320306076 @default.
- W2887493766 hasFunder F4320309321 @default.