Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887592955> ?p ?o ?g. }
- W2887592955 endingPage "177" @default.
- W2887592955 startingPage "169" @default.
- W2887592955 abstract "Nano-sized interphase precipitates, which form in ordered rows, are critical for HSLA (High Strength Low Alloy) steels, in achieving the desired strength needed for downgauging for light-weighting automotive structures. The occurrence of interphase precipitation (as opposed to random, heterogeneous precipitation inside grains) is dependent on a number of inter-connected parameters such as alloy chemistry, ferrite-growth rate, temperature, crystallography and precipitate shape and size. In this study, we employ data analysis based on the Machine Learning algorithms: Decision Tree and Random Forrest to predict when interphase precipitation occurs. The results show that Decision Tree could not provide an accurate prediction, even as the depth was increased, whereas Random Forrest was able to, after up-sampling the minority class, a score of 98% for Accuracy, Recall, Precision and F1, which is adequate for predicting the occurrences of interfacial precipitates. The importance of individual features on the artificial classification task was evaluated and the precipitate chemistry and morphology were recognised by algorithms as the most informative features for decision making. Because our final goal was to predict the interphase precipitation for samples outside our training set we used receiver operating characteristic curve (ROC) and we found a strong classification prediction as the area under the curve was 0.98. In addition, particles containing Mo with disk shape were predicted to be very likely to form interphase precipitates. The alloy composition range for Ti, Mo and Mn was derived through Gaussian kernel estimate distribution and 0.18 Ti, 0.44 Mo and 1.5 Mn (all in wt.%) had the highest peaks." @default.
- W2887592955 created "2018-08-22" @default.
- W2887592955 creator A5028754075 @default.
- W2887592955 creator A5038345356 @default.
- W2887592955 creator A5041791869 @default.
- W2887592955 date "2018-11-01" @default.
- W2887592955 modified "2023-10-03" @default.
- W2887592955 title "Machine learning for predicting occurrence of interphase precipitation in HSLA steels" @default.
- W2887592955 cites W1901616594 @default.
- W2887592955 cites W1965759165 @default.
- W2887592955 cites W1969889494 @default.
- W2887592955 cites W1971951812 @default.
- W2887592955 cites W1982598895 @default.
- W2887592955 cites W2013247902 @default.
- W2887592955 cites W2024933578 @default.
- W2887592955 cites W2025173386 @default.
- W2887592955 cites W2028877349 @default.
- W2887592955 cites W2031936726 @default.
- W2887592955 cites W2038126324 @default.
- W2887592955 cites W2039140729 @default.
- W2887592955 cites W2040244094 @default.
- W2887592955 cites W2040387238 @default.
- W2887592955 cites W2040587719 @default.
- W2887592955 cites W2050958104 @default.
- W2887592955 cites W2052876941 @default.
- W2887592955 cites W2055524319 @default.
- W2887592955 cites W2066115360 @default.
- W2887592955 cites W2070042334 @default.
- W2887592955 cites W2081028292 @default.
- W2887592955 cites W2084749455 @default.
- W2887592955 cites W2097850441 @default.
- W2887592955 cites W2124537635 @default.
- W2887592955 cites W2152436034 @default.
- W2887592955 cites W2289341038 @default.
- W2887592955 cites W2301868129 @default.
- W2887592955 cites W2313966941 @default.
- W2887592955 cites W2393418312 @default.
- W2887592955 cites W2396196938 @default.
- W2887592955 cites W2490901606 @default.
- W2887592955 cites W2507365948 @default.
- W2887592955 cites W2590591990 @default.
- W2887592955 cites W2600236415 @default.
- W2887592955 cites W2624164441 @default.
- W2887592955 cites W2748737924 @default.
- W2887592955 cites W2755202310 @default.
- W2887592955 cites W2767796977 @default.
- W2887592955 cites W4294541781 @default.
- W2887592955 doi "https://doi.org/10.1016/j.commatsci.2018.07.055" @default.
- W2887592955 hasPublicationYear "2018" @default.
- W2887592955 type Work @default.
- W2887592955 sameAs 2887592955 @default.
- W2887592955 citedByCount "17" @default.
- W2887592955 countsByYear W28875929552019 @default.
- W2887592955 countsByYear W28875929552020 @default.
- W2887592955 countsByYear W28875929552021 @default.
- W2887592955 countsByYear W28875929552022 @default.
- W2887592955 countsByYear W28875929552023 @default.
- W2887592955 crossrefType "journal-article" @default.
- W2887592955 hasAuthorship W2887592955A5028754075 @default.
- W2887592955 hasAuthorship W2887592955A5038345356 @default.
- W2887592955 hasAuthorship W2887592955A5041791869 @default.
- W2887592955 hasConcept C107054158 @default.
- W2887592955 hasConcept C121332964 @default.
- W2887592955 hasConcept C147597530 @default.
- W2887592955 hasConcept C153294291 @default.
- W2887592955 hasConcept C154945302 @default.
- W2887592955 hasConcept C163716315 @default.
- W2887592955 hasConcept C183115368 @default.
- W2887592955 hasConcept C185592680 @default.
- W2887592955 hasConcept C191897082 @default.
- W2887592955 hasConcept C192562407 @default.
- W2887592955 hasConcept C24890656 @default.
- W2887592955 hasConcept C2780026712 @default.
- W2887592955 hasConcept C29452124 @default.
- W2887592955 hasConcept C41008148 @default.
- W2887592955 hasConcept C54355233 @default.
- W2887592955 hasConcept C84525736 @default.
- W2887592955 hasConcept C86803240 @default.
- W2887592955 hasConceptScore W2887592955C107054158 @default.
- W2887592955 hasConceptScore W2887592955C121332964 @default.
- W2887592955 hasConceptScore W2887592955C147597530 @default.
- W2887592955 hasConceptScore W2887592955C153294291 @default.
- W2887592955 hasConceptScore W2887592955C154945302 @default.
- W2887592955 hasConceptScore W2887592955C163716315 @default.
- W2887592955 hasConceptScore W2887592955C183115368 @default.
- W2887592955 hasConceptScore W2887592955C185592680 @default.
- W2887592955 hasConceptScore W2887592955C191897082 @default.
- W2887592955 hasConceptScore W2887592955C192562407 @default.
- W2887592955 hasConceptScore W2887592955C24890656 @default.
- W2887592955 hasConceptScore W2887592955C2780026712 @default.
- W2887592955 hasConceptScore W2887592955C29452124 @default.
- W2887592955 hasConceptScore W2887592955C41008148 @default.
- W2887592955 hasConceptScore W2887592955C54355233 @default.
- W2887592955 hasConceptScore W2887592955C84525736 @default.
- W2887592955 hasConceptScore W2887592955C86803240 @default.
- W2887592955 hasLocation W28875929551 @default.
- W2887592955 hasOpenAccess W2887592955 @default.
- W2887592955 hasPrimaryLocation W28875929551 @default.