Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887596655> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2887596655 abstract "Polymeric nanocomposites (PNCs) are considered for numerous nanotechnology such as: nano-biotechnology, nano-systems, nanoelectronics, and nano-structured materials. Commonly , they are formed by polymer (epoxy) matrix reinforced with a nanosized filler. The addition of rigid nanofillers to the epoxy matrix has offered great improvements in the fracture toughness without sacrificing other important thermo-mechanical properties. The physics of the fracture in PNCs is rather complicated and is influenced by different parameters. The presence of uncertainty in the predicted output is expected as a result of stochastic variance in the factors affecting the fracture mechanism. Consequently, evaluating the improved fracture toughness in PNCs is a challenging problem.Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) have been employed to predict the fracture energy of polymer/particle nanocomposites. The ANN and ANFIS models were constructed, trained, and tested based on a collection of 115 experimental datasets gathered from the literature. The performance evaluation indices of the developed ANN and ANFIS showed relatively small error, with high coefficients of determination (R2), and low root mean square error and mean absolute percentage error.In the framework for uncertainty quantification of PNCs, a sensitivity analysis (SA) has been conducted to examine the influence of uncertain input parameters on the fracture toughness of polymer/clay nanocomposites (PNCs). The phase-field approach is employed to predict the macroscopic properties of the composite considering six uncertain input parameters. The efficiency, robustness, and repeatability are compared and evaluated comprehensively for five different SA methods.The Bayesian method is applied to develop a methodology in order to evaluate the performance of different analytical models used in predicting the fracture toughness of polymeric particles nanocomposites. The developed method have considered the model and parameters uncertainties based on different reference data (experimental measurements) gained from the literature. Three analytical models differing in theory and assumptions were examined. The coefficients of variation of the model predictions to the measurements are calculated using the approximated optimal parameter sets. Then, the model selection probability is obtained with respect to the different reference data.Stochastic finite element modeling is implemented to predict the fracture toughness of polymer/particle nanocomposites. For this purpose, 2D finite element model containing an epoxy matrix and rigid nanoparticles surrounded by an interphase zone is generated. The crack propagation is simulated by the cohesive segments method and phantom nodes. Considering the uncertainties in the input parameters, a polynomial chaos expansion (PCE) surrogate model is construed followed by a sensitivity analysis." @default.
- W2887596655 created "2018-08-22" @default.
- W2887596655 creator A5043926461 @default.
- W2887596655 date "2018-07-12" @default.
- W2887596655 modified "2023-09-27" @default.
- W2887596655 title "On the fracture toughness of polymeric nanocomposites: Comprehensive stochastic and numerical studies" @default.
- W2887596655 hasPublicationYear "2018" @default.
- W2887596655 type Work @default.
- W2887596655 sameAs 2887596655 @default.
- W2887596655 citedByCount "0" @default.
- W2887596655 crossrefType "journal-article" @default.
- W2887596655 hasAuthorship W2887596655A5043926461 @default.
- W2887596655 hasConcept C104317684 @default.
- W2887596655 hasConcept C154945302 @default.
- W2887596655 hasConcept C159985019 @default.
- W2887596655 hasConcept C185592680 @default.
- W2887596655 hasConcept C186108316 @default.
- W2887596655 hasConcept C192562407 @default.
- W2887596655 hasConcept C195975749 @default.
- W2887596655 hasConcept C3231350 @default.
- W2887596655 hasConcept C41008148 @default.
- W2887596655 hasConcept C43369102 @default.
- W2887596655 hasConcept C55493867 @default.
- W2887596655 hasConcept C58166 @default.
- W2887596655 hasConcept C63479239 @default.
- W2887596655 hasConcept C92880739 @default.
- W2887596655 hasConcept C97549433 @default.
- W2887596655 hasConcept C99595764 @default.
- W2887596655 hasConceptScore W2887596655C104317684 @default.
- W2887596655 hasConceptScore W2887596655C154945302 @default.
- W2887596655 hasConceptScore W2887596655C159985019 @default.
- W2887596655 hasConceptScore W2887596655C185592680 @default.
- W2887596655 hasConceptScore W2887596655C186108316 @default.
- W2887596655 hasConceptScore W2887596655C192562407 @default.
- W2887596655 hasConceptScore W2887596655C195975749 @default.
- W2887596655 hasConceptScore W2887596655C3231350 @default.
- W2887596655 hasConceptScore W2887596655C41008148 @default.
- W2887596655 hasConceptScore W2887596655C43369102 @default.
- W2887596655 hasConceptScore W2887596655C55493867 @default.
- W2887596655 hasConceptScore W2887596655C58166 @default.
- W2887596655 hasConceptScore W2887596655C63479239 @default.
- W2887596655 hasConceptScore W2887596655C92880739 @default.
- W2887596655 hasConceptScore W2887596655C97549433 @default.
- W2887596655 hasConceptScore W2887596655C99595764 @default.
- W2887596655 hasLocation W28875966551 @default.
- W2887596655 hasOpenAccess W2887596655 @default.
- W2887596655 hasPrimaryLocation W28875966551 @default.
- W2887596655 hasRelatedWork W1558483661 @default.
- W2887596655 hasRelatedWork W1645404341 @default.
- W2887596655 hasRelatedWork W1965343842 @default.
- W2887596655 hasRelatedWork W1970506839 @default.
- W2887596655 hasRelatedWork W2068252590 @default.
- W2887596655 hasRelatedWork W2080448757 @default.
- W2887596655 hasRelatedWork W2188711004 @default.
- W2887596655 hasRelatedWork W2487300570 @default.
- W2887596655 hasRelatedWork W2529939626 @default.
- W2887596655 hasRelatedWork W2552200910 @default.
- W2887596655 hasRelatedWork W2608227894 @default.
- W2887596655 hasRelatedWork W2771450171 @default.
- W2887596655 hasRelatedWork W2788522285 @default.
- W2887596655 hasRelatedWork W2883868916 @default.
- W2887596655 hasRelatedWork W2970485619 @default.
- W2887596655 hasRelatedWork W2996362545 @default.
- W2887596655 hasRelatedWork W3019854588 @default.
- W2887596655 hasRelatedWork W3114094356 @default.
- W2887596655 hasRelatedWork W807983188 @default.
- W2887596655 hasRelatedWork W2144394170 @default.
- W2887596655 isParatext "false" @default.
- W2887596655 isRetracted "false" @default.
- W2887596655 magId "2887596655" @default.
- W2887596655 workType "article" @default.