Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887681142> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2887681142 abstract "A multi-core machine allows executing several applications simultaneously. Those jobs are scheduled on different cores and compete for shared resources such as the last level cache and memory bandwidth. Such competitions might cause performance degradation. Data centers often utilize virtualization to provide a certain level of performance isolation. However, some of the shared resources cannot be divided, even in a virtualized system, to ensure complete isolation. If the performance degradation of co-tenancy is not known to the cloud administrator, a data center often has to dedicate a whole machine for a latency-sensitive application to guarantee its quality of service. Co-run scheduling attempts to make good utilization of resources by scheduling compatible jobs into one machine while maintaining their service level agreements. An ideal co-run scheduling scheme requires accurate contention modeling. Recent studies for co-run modeling and scheduling have made steady progress to predict performance for two co-run applications sharing a specific system. This thesis advances co-tenancy modeling in three aspects. First, with an accurate co-run modeling for one system at hand, we propose a regression model to transfer the knowledge and create a model for a new system with different hardware configuration. Second, by examining those programs that yield high prediction errors, we further leverage clustering techniques to create a model for each group of applications that show similar behavior. Clustering helps improve the prediction accuracy of those pathological cases. Third, existing research is typically focused on modeling two application co-run cases. We extend a two-core model to a three- and four-core model by introducing a light-weight micro-kernel that emulates a complicated benchmark through program instrumentation. Our experimental evaluation shows that our cross-architecture model achieves an average prediction error less than 2% for pairwise co-runs across the SPECCPU2006 benchmark suite. For more than two application co-tenancy modeling, we show that our model is more scalable and can achieve an average prediction error of 2-3%." @default.
- W2887681142 created "2018-08-22" @default.
- W2887681142 creator A5020879372 @default.
- W2887681142 date "2021-01-11" @default.
- W2887681142 modified "2023-09-27" @default.
- W2887681142 title "Modeling Data Center Co-Tenancy Performance Interference" @default.
- W2887681142 cites W2098278566 @default.
- W2887681142 doi "https://doi.org/10.37099/mtu.dc.etdr/596" @default.
- W2887681142 hasPublicationYear "2021" @default.
- W2887681142 type Work @default.
- W2887681142 sameAs 2887681142 @default.
- W2887681142 citedByCount "0" @default.
- W2887681142 crossrefType "dissertation" @default.
- W2887681142 hasAuthorship W2887681142A5020879372 @default.
- W2887681142 hasBestOaLocation W28876811421 @default.
- W2887681142 hasConcept C111919701 @default.
- W2887681142 hasConcept C120314980 @default.
- W2887681142 hasConcept C127413603 @default.
- W2887681142 hasConcept C142355369 @default.
- W2887681142 hasConcept C153083717 @default.
- W2887681142 hasConcept C153740404 @default.
- W2887681142 hasConcept C154945302 @default.
- W2887681142 hasConcept C175133352 @default.
- W2887681142 hasConcept C206729178 @default.
- W2887681142 hasConcept C21547014 @default.
- W2887681142 hasConcept C2777904410 @default.
- W2887681142 hasConcept C41008148 @default.
- W2887681142 hasConcept C513985346 @default.
- W2887681142 hasConcept C529173508 @default.
- W2887681142 hasConcept C69016650 @default.
- W2887681142 hasConcept C79974875 @default.
- W2887681142 hasConceptScore W2887681142C111919701 @default.
- W2887681142 hasConceptScore W2887681142C120314980 @default.
- W2887681142 hasConceptScore W2887681142C127413603 @default.
- W2887681142 hasConceptScore W2887681142C142355369 @default.
- W2887681142 hasConceptScore W2887681142C153083717 @default.
- W2887681142 hasConceptScore W2887681142C153740404 @default.
- W2887681142 hasConceptScore W2887681142C154945302 @default.
- W2887681142 hasConceptScore W2887681142C175133352 @default.
- W2887681142 hasConceptScore W2887681142C206729178 @default.
- W2887681142 hasConceptScore W2887681142C21547014 @default.
- W2887681142 hasConceptScore W2887681142C2777904410 @default.
- W2887681142 hasConceptScore W2887681142C41008148 @default.
- W2887681142 hasConceptScore W2887681142C513985346 @default.
- W2887681142 hasConceptScore W2887681142C529173508 @default.
- W2887681142 hasConceptScore W2887681142C69016650 @default.
- W2887681142 hasConceptScore W2887681142C79974875 @default.
- W2887681142 hasLocation W28876811421 @default.
- W2887681142 hasOpenAccess W2887681142 @default.
- W2887681142 hasPrimaryLocation W28876811421 @default.
- W2887681142 hasRelatedWork W1582951990 @default.
- W2887681142 hasRelatedWork W1652013217 @default.
- W2887681142 hasRelatedWork W171439803 @default.
- W2887681142 hasRelatedWork W1992121178 @default.
- W2887681142 hasRelatedWork W2029835570 @default.
- W2887681142 hasRelatedWork W2036074818 @default.
- W2887681142 hasRelatedWork W2482433750 @default.
- W2887681142 hasRelatedWork W4285814007 @default.
- W2887681142 hasRelatedWork W4301397976 @default.
- W2887681142 hasRelatedWork W2185337323 @default.
- W2887681142 isParatext "false" @default.
- W2887681142 isRetracted "false" @default.
- W2887681142 magId "2887681142" @default.
- W2887681142 workType "dissertation" @default.