Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887687623> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2887687623 endingPage "549" @default.
- W2887687623 startingPage "544" @default.
- W2887687623 abstract "Rationale and Objectives We propose a novel convolutional neural network derived pixel-wise breast cancer risk model using mammographic dataset. Materials and Methods An institutional review board approved retrospective case-control study of 1474 mammographic images was performed in average risk women. First, 210 patients with new incidence of breast cancer were identified. Mammograms from these patients prior to developing breast cancer were identified and made up the case group [420 bilateral craniocaudal mammograms]. The control group consisted of 527 patients without breast cancer from the same time period. Prior mammograms from these patients made up the control group [1054 bilateral craniocaudal mammograms]. A convolutional neural network (CNN) architecture was designed for pixel-wise breast cancer risk prediction. Briefly, each mammogram was normalized as a map of z-scores and resized to an input image size of 256 × 256. Then a contracting and expanding fully convolutional CNN architecture was composed entirely of 3 × 3 convolutions, a total of four strided convolutions instead of pooling layers, and symmetric residual connections. L2 regularization and augmentation methods were implemented to prevent overfitting. Cases were separated into training (80%) and test sets (20%). A 5-fold cross validation was performed. Software code was written in Python using the TensorFlow module on a Linux workstation with NVIDIA GTX 1070 Pascal GPU. Results The average age of patients between the case and the control groups was not statistically different [case: 57.4years (SD, 10.4) and control: 58.2years (SD, 10.9), p = 0.33]. Breast Density (BD) was significantly higher in the case group [2.39 (SD, 0.7)] than the control group [1.98 (SD, 0.75), p < 0.0001]. On multivariate logistic regression analysis, both CNN pixel-wise mammographic risk model and BD were significant independent predictors of breast cancer risk (p < 0.0001). The CNN risk model showed greater predictive potential [OR = 4.42 (95% CI, 3.4–5.7] compared to BD [OR = 1.67 (95% CI, 1.4–1.9). The CNN risk model achieved an overall accuracy of 72% (95%CI, 69.8–74.4) in predicting patients in the case group. Conclusion Novel pixel-wise mammographic breast evaluation using a CNN architecture can stratify breast cancer risk, independent of the BD. Larger dataset will likely improve our model. We propose a novel convolutional neural network derived pixel-wise breast cancer risk model using mammographic dataset. An institutional review board approved retrospective case-control study of 1474 mammographic images was performed in average risk women. First, 210 patients with new incidence of breast cancer were identified. Mammograms from these patients prior to developing breast cancer were identified and made up the case group [420 bilateral craniocaudal mammograms]. The control group consisted of 527 patients without breast cancer from the same time period. Prior mammograms from these patients made up the control group [1054 bilateral craniocaudal mammograms]. A convolutional neural network (CNN) architecture was designed for pixel-wise breast cancer risk prediction. Briefly, each mammogram was normalized as a map of z-scores and resized to an input image size of 256 × 256. Then a contracting and expanding fully convolutional CNN architecture was composed entirely of 3 × 3 convolutions, a total of four strided convolutions instead of pooling layers, and symmetric residual connections. L2 regularization and augmentation methods were implemented to prevent overfitting. Cases were separated into training (80%) and test sets (20%). A 5-fold cross validation was performed. Software code was written in Python using the TensorFlow module on a Linux workstation with NVIDIA GTX 1070 Pascal GPU. The average age of patients between the case and the control groups was not statistically different [case: 57.4years (SD, 10.4) and control: 58.2years (SD, 10.9), p = 0.33]. Breast Density (BD) was significantly higher in the case group [2.39 (SD, 0.7)] than the control group [1.98 (SD, 0.75), p < 0.0001]. On multivariate logistic regression analysis, both CNN pixel-wise mammographic risk model and BD were significant independent predictors of breast cancer risk (p < 0.0001). The CNN risk model showed greater predictive potential [OR = 4.42 (95% CI, 3.4–5.7] compared to BD [OR = 1.67 (95% CI, 1.4–1.9). The CNN risk model achieved an overall accuracy of 72% (95%CI, 69.8–74.4) in predicting patients in the case group. Novel pixel-wise mammographic breast evaluation using a CNN architecture can stratify breast cancer risk, independent of the BD. Larger dataset will likely improve our model." @default.
- W2887687623 created "2018-08-22" @default.
- W2887687623 creator A5012995283 @default.
- W2887687623 creator A5049843981 @default.
- W2887687623 creator A5059032763 @default.
- W2887687623 creator A5060117211 @default.
- W2887687623 creator A5061512119 @default.
- W2887687623 creator A5074397580 @default.
- W2887687623 creator A5090374919 @default.
- W2887687623 date "2019-04-01" @default.
- W2887687623 modified "2023-09-30" @default.
- W2887687623 title "Convolutional Neural Network Based Breast Cancer Risk Stratification Using a Mammographic Dataset" @default.
- W2887687623 cites W1025585607 @default.
- W2887687623 cites W2031801587 @default.
- W2887687623 cites W2041704199 @default.
- W2887687623 cites W2061138960 @default.
- W2887687623 cites W2079019493 @default.
- W2887687623 cites W2089121733 @default.
- W2887687623 cites W2119890674 @default.
- W2887687623 cites W2119933806 @default.
- W2887687623 cites W2132735969 @default.
- W2887687623 cites W2132763951 @default.
- W2887687623 cites W2133911584 @default.
- W2887687623 cites W2137839901 @default.
- W2887687623 cites W2148554069 @default.
- W2887687623 cites W2155329254 @default.
- W2887687623 cites W2162207052 @default.
- W2887687623 cites W2167363078 @default.
- W2887687623 cites W2283351472 @default.
- W2887687623 cites W2570618306 @default.
- W2887687623 cites W2775484428 @default.
- W2887687623 cites W2775577467 @default.
- W2887687623 cites W2919115771 @default.
- W2887687623 doi "https://doi.org/10.1016/j.acra.2018.06.020" @default.
- W2887687623 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8114104" @default.
- W2887687623 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30072292" @default.
- W2887687623 hasPublicationYear "2019" @default.
- W2887687623 type Work @default.
- W2887687623 sameAs 2887687623 @default.
- W2887687623 citedByCount "35" @default.
- W2887687623 countsByYear W28876876232019 @default.
- W2887687623 countsByYear W28876876232020 @default.
- W2887687623 countsByYear W28876876232021 @default.
- W2887687623 countsByYear W28876876232022 @default.
- W2887687623 countsByYear W28876876232023 @default.
- W2887687623 crossrefType "journal-article" @default.
- W2887687623 hasAuthorship W2887687623A5012995283 @default.
- W2887687623 hasAuthorship W2887687623A5049843981 @default.
- W2887687623 hasAuthorship W2887687623A5059032763 @default.
- W2887687623 hasAuthorship W2887687623A5060117211 @default.
- W2887687623 hasAuthorship W2887687623A5061512119 @default.
- W2887687623 hasAuthorship W2887687623A5074397580 @default.
- W2887687623 hasAuthorship W2887687623A5090374919 @default.
- W2887687623 hasBestOaLocation W28876876232 @default.
- W2887687623 hasConcept C121608353 @default.
- W2887687623 hasConcept C126322002 @default.
- W2887687623 hasConcept C153180895 @default.
- W2887687623 hasConcept C154945302 @default.
- W2887687623 hasConcept C160633673 @default.
- W2887687623 hasConcept C22019652 @default.
- W2887687623 hasConcept C41008148 @default.
- W2887687623 hasConcept C50644808 @default.
- W2887687623 hasConcept C530470458 @default.
- W2887687623 hasConcept C71924100 @default.
- W2887687623 hasConcept C81363708 @default.
- W2887687623 hasConceptScore W2887687623C121608353 @default.
- W2887687623 hasConceptScore W2887687623C126322002 @default.
- W2887687623 hasConceptScore W2887687623C153180895 @default.
- W2887687623 hasConceptScore W2887687623C154945302 @default.
- W2887687623 hasConceptScore W2887687623C160633673 @default.
- W2887687623 hasConceptScore W2887687623C22019652 @default.
- W2887687623 hasConceptScore W2887687623C41008148 @default.
- W2887687623 hasConceptScore W2887687623C50644808 @default.
- W2887687623 hasConceptScore W2887687623C530470458 @default.
- W2887687623 hasConceptScore W2887687623C71924100 @default.
- W2887687623 hasConceptScore W2887687623C81363708 @default.
- W2887687623 hasFunder F4320309480 @default.
- W2887687623 hasFunder F4320337363 @default.
- W2887687623 hasIssue "4" @default.
- W2887687623 hasLocation W28876876231 @default.
- W2887687623 hasLocation W28876876232 @default.
- W2887687623 hasOpenAccess W2887687623 @default.
- W2887687623 hasPrimaryLocation W28876876231 @default.
- W2887687623 hasRelatedWork W2136485282 @default.
- W2887687623 hasRelatedWork W2546871836 @default.
- W2887687623 hasRelatedWork W2742991909 @default.
- W2887687623 hasRelatedWork W2767651786 @default.
- W2887687623 hasRelatedWork W3012393889 @default.
- W2887687623 hasRelatedWork W3081496756 @default.
- W2887687623 hasRelatedWork W3127819136 @default.
- W2887687623 hasRelatedWork W4220996320 @default.
- W2887687623 hasRelatedWork W4283701629 @default.
- W2887687623 hasRelatedWork W785854688 @default.
- W2887687623 hasVolume "26" @default.
- W2887687623 isParatext "false" @default.
- W2887687623 isRetracted "false" @default.
- W2887687623 magId "2887687623" @default.
- W2887687623 workType "article" @default.