Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887691491> ?p ?o ?g. }
- W2887691491 abstract "A major challenge of screen-camera visual multiinput multi-output (MIMO) communications is to increase the achievable throughput by reducing nonlinear channel effects including perspective distortion, ambient lights, and color mixing. To mitigate such nonlinear effects, an existing transmission method uses linear or simple nonlinear equalizations in decoding operations. However, the throughput improvement from the equalization techniques is often limited because the effects are composed of a combination of various nonlinear distortions. In addition to the above issue, the existing studies consider specific environments, such as indoor and static communications, although screen-camera communications can be used for a variety of applications including outdoor and mobile scenarios. In this study, we propose 1) deep neural network (DNN)- based decoding for screen-camera communications to increase the achievable throughput and 2) Unity 3D-based evaluation methodology to synthetically learn the DNN for being robust against many different screen-camera environments. The DNN finds the best nonlinear kernels for equalization from numerously captured images, and then decodes original bits from newly captured images based on the trained nonlinear kernels. In the Unity-based evaluation tool, we can easily capture numerous photo-realistic images in different screen-camera scenarios to learn the impact of perspective distortion, screen- to-camera distance, motion blur, and ambient lights on the throughput since Unity-based environment can freely set programmable screens, cameras, and ambient lights on a 3D space. As an initial proof of concept, we demonstrate that the proposed DNN-based decoder scheme improves the achievable throughput by up to 148% compared to existing methods by equalizing nonlinear effects." @default.
- W2887691491 created "2018-08-22" @default.
- W2887691491 creator A5019715983 @default.
- W2887691491 creator A5023338067 @default.
- W2887691491 creator A5044769104 @default.
- W2887691491 creator A5046987979 @default.
- W2887691491 date "2018-05-01" @default.
- W2887691491 modified "2023-09-26" @default.
- W2887691491 title "Nonlinear Equalization with Deep Learning for Multi-Purpose Visual MIMO Communications" @default.
- W2887691491 cites W1494682407 @default.
- W2887691491 cites W1927667002 @default.
- W2887691491 cites W1988885408 @default.
- W2887691491 cites W1991777572 @default.
- W2887691491 cites W2006614395 @default.
- W2887691491 cites W2017564549 @default.
- W2887691491 cites W2021767041 @default.
- W2887691491 cites W2050755131 @default.
- W2887691491 cites W2050843820 @default.
- W2887691491 cites W2051623619 @default.
- W2887691491 cites W2055548259 @default.
- W2887691491 cites W2076063813 @default.
- W2887691491 cites W2138025876 @default.
- W2887691491 cites W2291141847 @default.
- W2887691491 cites W2478219092 @default.
- W2887691491 cites W2488240503 @default.
- W2887691491 cites W2496376929 @default.
- W2887691491 cites W2583571212 @default.
- W2887691491 cites W2584480697 @default.
- W2887691491 doi "https://doi.org/10.1109/icc.2018.8422544" @default.
- W2887691491 hasPublicationYear "2018" @default.
- W2887691491 type Work @default.
- W2887691491 sameAs 2887691491 @default.
- W2887691491 citedByCount "5" @default.
- W2887691491 countsByYear W28876914912018 @default.
- W2887691491 countsByYear W28876914912019 @default.
- W2887691491 countsByYear W28876914912020 @default.
- W2887691491 crossrefType "proceedings-article" @default.
- W2887691491 hasAuthorship W2887691491A5019715983 @default.
- W2887691491 hasAuthorship W2887691491A5023338067 @default.
- W2887691491 hasAuthorship W2887691491A5044769104 @default.
- W2887691491 hasAuthorship W2887691491A5046987979 @default.
- W2887691491 hasConcept C11413529 @default.
- W2887691491 hasConcept C121332964 @default.
- W2887691491 hasConcept C126780896 @default.
- W2887691491 hasConcept C127162648 @default.
- W2887691491 hasConcept C154945302 @default.
- W2887691491 hasConcept C157764524 @default.
- W2887691491 hasConcept C158622935 @default.
- W2887691491 hasConcept C173413354 @default.
- W2887691491 hasConcept C194257627 @default.
- W2887691491 hasConcept C207987634 @default.
- W2887691491 hasConcept C2776257435 @default.
- W2887691491 hasConcept C31972630 @default.
- W2887691491 hasConcept C41008148 @default.
- W2887691491 hasConcept C555944384 @default.
- W2887691491 hasConcept C57273362 @default.
- W2887691491 hasConcept C62520636 @default.
- W2887691491 hasConcept C761482 @default.
- W2887691491 hasConcept C76155785 @default.
- W2887691491 hasConcept C79403827 @default.
- W2887691491 hasConceptScore W2887691491C11413529 @default.
- W2887691491 hasConceptScore W2887691491C121332964 @default.
- W2887691491 hasConceptScore W2887691491C126780896 @default.
- W2887691491 hasConceptScore W2887691491C127162648 @default.
- W2887691491 hasConceptScore W2887691491C154945302 @default.
- W2887691491 hasConceptScore W2887691491C157764524 @default.
- W2887691491 hasConceptScore W2887691491C158622935 @default.
- W2887691491 hasConceptScore W2887691491C173413354 @default.
- W2887691491 hasConceptScore W2887691491C194257627 @default.
- W2887691491 hasConceptScore W2887691491C207987634 @default.
- W2887691491 hasConceptScore W2887691491C2776257435 @default.
- W2887691491 hasConceptScore W2887691491C31972630 @default.
- W2887691491 hasConceptScore W2887691491C41008148 @default.
- W2887691491 hasConceptScore W2887691491C555944384 @default.
- W2887691491 hasConceptScore W2887691491C57273362 @default.
- W2887691491 hasConceptScore W2887691491C62520636 @default.
- W2887691491 hasConceptScore W2887691491C761482 @default.
- W2887691491 hasConceptScore W2887691491C76155785 @default.
- W2887691491 hasConceptScore W2887691491C79403827 @default.
- W2887691491 hasLocation W28876914911 @default.
- W2887691491 hasOpenAccess W2887691491 @default.
- W2887691491 hasPrimaryLocation W28876914911 @default.
- W2887691491 hasRelatedWork W2765304414 @default.
- W2887691491 hasRelatedWork W2911982387 @default.
- W2887691491 hasRelatedWork W2916088741 @default.
- W2887691491 hasRelatedWork W2959557487 @default.
- W2887691491 hasRelatedWork W2959916218 @default.
- W2887691491 hasRelatedWork W2967677697 @default.
- W2887691491 hasRelatedWork W2995202655 @default.
- W2887691491 hasRelatedWork W3006760583 @default.
- W2887691491 hasRelatedWork W3030809813 @default.
- W2887691491 hasRelatedWork W3039679662 @default.
- W2887691491 hasRelatedWork W3048309201 @default.
- W2887691491 hasRelatedWork W3094341901 @default.
- W2887691491 hasRelatedWork W3095011812 @default.
- W2887691491 hasRelatedWork W3099703818 @default.
- W2887691491 hasRelatedWork W3100214030 @default.
- W2887691491 hasRelatedWork W3115481010 @default.
- W2887691491 hasRelatedWork W3134213669 @default.
- W2887691491 hasRelatedWork W3170566000 @default.