Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887773909> ?p ?o ?g. }
- W2887773909 endingPage "1726" @default.
- W2887773909 startingPage "1717" @default.
- W2887773909 abstract "Automatic seizure detection technology can automatically mark the EEG by using the epileptic detection algorithm, which is helpful to the diagnosis and treatment of epileptic diseases. This paper presents an EEG classification framework based on the denoising sparse autoencoder. The denoising sparse autoencoder (DSAE) is an improved unsupervised deep neural network over sparse autoencoder and denoising autoencoder, which can learn the closest representation of the data. The sparsity constraint applied in the hidden layer of the network makes the expression of data as sparse as possible so as to obtain a more efficient representation of EEG signals. In addition, corrupting operation used in input data help to enhance the robustness of the system and make it suitable for the analysis of non-stationary epileptic EEG signals. In this paper, we first imported the pre-processed training data to the DSAE network and trained the network. A logistic regression classifier was connected to the top of the DSAE. Then, put the test data into the system for classification. Finally, the output results of the overall network were post-processed to obtain the final epilepsy detection results. In the two-class (nonseizure and seizure EEGs) problem, the system has achieved effective results with the average sensitivity of 100%, specificity of 100%, and recognition of 100%, showing that the proposed framework can be efficient for the classification of epileptic EEGs." @default.
- W2887773909 created "2018-08-22" @default.
- W2887773909 creator A5000428940 @default.
- W2887773909 creator A5035398669 @default.
- W2887773909 creator A5049224661 @default.
- W2887773909 creator A5055283229 @default.
- W2887773909 date "2018-09-01" @default.
- W2887773909 modified "2023-09-27" @default.
- W2887773909 title "Denoising Sparse Autoencoder-Based Ictal EEG Classification" @default.
- W2887773909 cites W10284730 @default.
- W2887773909 cites W1636374184 @default.
- W2887773909 cites W1818768602 @default.
- W2887773909 cites W1963950237 @default.
- W2887773909 cites W1965370992 @default.
- W2887773909 cites W1969946769 @default.
- W2887773909 cites W1971386783 @default.
- W2887773909 cites W1974991504 @default.
- W2887773909 cites W1989906353 @default.
- W2887773909 cites W1990441178 @default.
- W2887773909 cites W2001612033 @default.
- W2887773909 cites W2004731943 @default.
- W2887773909 cites W2011484846 @default.
- W2887773909 cites W2013899329 @default.
- W2887773909 cites W2017723185 @default.
- W2887773909 cites W2019697492 @default.
- W2887773909 cites W2023335485 @default.
- W2887773909 cites W2024461202 @default.
- W2887773909 cites W2024482587 @default.
- W2887773909 cites W2025768430 @default.
- W2887773909 cites W2026869578 @default.
- W2887773909 cites W2032070545 @default.
- W2887773909 cites W2034697419 @default.
- W2887773909 cites W2038421214 @default.
- W2887773909 cites W2041935121 @default.
- W2887773909 cites W2053744708 @default.
- W2887773909 cites W2071341607 @default.
- W2887773909 cites W2071756182 @default.
- W2887773909 cites W2077640225 @default.
- W2887773909 cites W2077746856 @default.
- W2887773909 cites W2078760541 @default.
- W2887773909 cites W2080168990 @default.
- W2887773909 cites W2081134676 @default.
- W2887773909 cites W2084746581 @default.
- W2887773909 cites W2091082022 @default.
- W2887773909 cites W2092206153 @default.
- W2887773909 cites W2092249933 @default.
- W2887773909 cites W2092634008 @default.
- W2887773909 cites W2100495367 @default.
- W2887773909 cites W2113894235 @default.
- W2887773909 cites W2118033287 @default.
- W2887773909 cites W2119234283 @default.
- W2887773909 cites W2129094939 @default.
- W2887773909 cites W2140957936 @default.
- W2887773909 cites W2154557769 @default.
- W2887773909 cites W2154877864 @default.
- W2887773909 cites W2160867523 @default.
- W2887773909 cites W2168717107 @default.
- W2887773909 cites W2462271429 @default.
- W2887773909 cites W2560897477 @default.
- W2887773909 cites W2598587204 @default.
- W2887773909 cites W2606301878 @default.
- W2887773909 cites W2734768853 @default.
- W2887773909 cites W2763649037 @default.
- W2887773909 cites W2767334709 @default.
- W2887773909 cites W3009948084 @default.
- W2887773909 cites W4230539245 @default.
- W2887773909 cites W4234795407 @default.
- W2887773909 cites W4378009855 @default.
- W2887773909 doi "https://doi.org/10.1109/tnsre.2018.2864306" @default.
- W2887773909 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30106681" @default.
- W2887773909 hasPublicationYear "2018" @default.
- W2887773909 type Work @default.
- W2887773909 sameAs 2887773909 @default.
- W2887773909 citedByCount "56" @default.
- W2887773909 countsByYear W28877739092019 @default.
- W2887773909 countsByYear W28877739092020 @default.
- W2887773909 countsByYear W28877739092021 @default.
- W2887773909 countsByYear W28877739092022 @default.
- W2887773909 countsByYear W28877739092023 @default.
- W2887773909 crossrefType "journal-article" @default.
- W2887773909 hasAuthorship W2887773909A5000428940 @default.
- W2887773909 hasAuthorship W2887773909A5035398669 @default.
- W2887773909 hasAuthorship W2887773909A5049224661 @default.
- W2887773909 hasAuthorship W2887773909A5055283229 @default.
- W2887773909 hasConcept C101738243 @default.
- W2887773909 hasConcept C104317684 @default.
- W2887773909 hasConcept C118552586 @default.
- W2887773909 hasConcept C119857082 @default.
- W2887773909 hasConcept C124066611 @default.
- W2887773909 hasConcept C153180895 @default.
- W2887773909 hasConcept C154945302 @default.
- W2887773909 hasConcept C15744967 @default.
- W2887773909 hasConcept C163294075 @default.
- W2887773909 hasConcept C185592680 @default.
- W2887773909 hasConcept C188441871 @default.
- W2887773909 hasConcept C2779334592 @default.
- W2887773909 hasConcept C41008148 @default.
- W2887773909 hasConcept C50644808 @default.