Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887944710> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2887944710 endingPage "114" @default.
- W2887944710 startingPage "109" @default.
- W2887944710 abstract "Abstract Smartphone use, especially the Android platform, has already got 80% market shares, due to an aforementioned [where?] report, it becomes an attacker's primary objective. There is a growing number of storing private data onto smart phones and low safety defense measures, attackers can use multiple ways to launch and attack user's smartphones. (e.g. Using different coding style to confuse the malware detecting software). Existing Android malware detection methods use multiple features, like safety sensor API, system call, control flow structure and data information flow, then also machine learning to check whether its malware or not. These features provide app's unique property and limitation, that is to say, from some perspectives it might suit for some specific attack, but wouldn't suit for others. Nowadays most malware detection methods use only one of the aforementioned features, and these methods mostly analyze to detect code, but facing the malware code confusion and zero-day attacks, the aforementioned feature's extraction method may cause wrong judgement. So, it's necessary to design an effective technique analysis to prevent malware. In this paper, we use the importance of words from an apk, because of code confusion, some malware attackers only rename variables. If using general static analysis cannot judge correctly, then we use these importance values to go through our proposed method to generate an image, finally use a convolutional neural network to decide whether the apk file is malware or not." @default.
- W2887944710 created "2018-08-22" @default.
- W2887944710 creator A5076813053 @default.
- W2887944710 creator A5077396977 @default.
- W2887944710 date "2019-02-01" @default.
- W2887944710 modified "2023-10-12" @default.
- W2887944710 title "An Android mutation malware detection based on deep learning using visualization of importance from codes" @default.
- W2887944710 cites W2070970642 @default.
- W2887944710 cites W2116668505 @default.
- W2887944710 cites W2123519624 @default.
- W2887944710 cites W2332177866 @default.
- W2887944710 doi "https://doi.org/10.1016/j.microrel.2019.01.007" @default.
- W2887944710 hasPublicationYear "2019" @default.
- W2887944710 type Work @default.
- W2887944710 sameAs 2887944710 @default.
- W2887944710 citedByCount "63" @default.
- W2887944710 countsByYear W28879447102019 @default.
- W2887944710 countsByYear W28879447102020 @default.
- W2887944710 countsByYear W28879447102021 @default.
- W2887944710 countsByYear W28879447102022 @default.
- W2887944710 countsByYear W28879447102023 @default.
- W2887944710 crossrefType "journal-article" @default.
- W2887944710 hasAuthorship W2887944710A5076813053 @default.
- W2887944710 hasAuthorship W2887944710A5077396977 @default.
- W2887944710 hasConcept C108583219 @default.
- W2887944710 hasConcept C111919701 @default.
- W2887944710 hasConcept C154945302 @default.
- W2887944710 hasConcept C2989133298 @default.
- W2887944710 hasConcept C36464697 @default.
- W2887944710 hasConcept C41008148 @default.
- W2887944710 hasConcept C541664917 @default.
- W2887944710 hasConcept C557433098 @default.
- W2887944710 hasConceptScore W2887944710C108583219 @default.
- W2887944710 hasConceptScore W2887944710C111919701 @default.
- W2887944710 hasConceptScore W2887944710C154945302 @default.
- W2887944710 hasConceptScore W2887944710C2989133298 @default.
- W2887944710 hasConceptScore W2887944710C36464697 @default.
- W2887944710 hasConceptScore W2887944710C41008148 @default.
- W2887944710 hasConceptScore W2887944710C541664917 @default.
- W2887944710 hasConceptScore W2887944710C557433098 @default.
- W2887944710 hasFunder F4320322795 @default.
- W2887944710 hasLocation W28879447101 @default.
- W2887944710 hasOpenAccess W2887944710 @default.
- W2887944710 hasPrimaryLocation W28879447101 @default.
- W2887944710 hasRelatedWork W2232725992 @default.
- W2887944710 hasRelatedWork W2586845402 @default.
- W2887944710 hasRelatedWork W2966784639 @default.
- W2887944710 hasRelatedWork W3012546138 @default.
- W2887944710 hasRelatedWork W3148795420 @default.
- W2887944710 hasRelatedWork W3156488741 @default.
- W2887944710 hasRelatedWork W3160238701 @default.
- W2887944710 hasRelatedWork W3173040539 @default.
- W2887944710 hasRelatedWork W3200977432 @default.
- W2887944710 hasRelatedWork W3201057261 @default.
- W2887944710 hasVolume "93" @default.
- W2887944710 isParatext "false" @default.
- W2887944710 isRetracted "false" @default.
- W2887944710 magId "2887944710" @default.
- W2887944710 workType "article" @default.