Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887964057> ?p ?o ?g. }
- W2887964057 endingPage "724" @default.
- W2887964057 startingPage "707" @default.
- W2887964057 abstract "This work addresses the problem of semantic scene understanding under dense fog. Although considerable progress has been made in semantic scene understanding, it is mainly related to clear-weather scenes. Extending recognition methods to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel method, named Curriculum Model Adaptation (CMAda), which gradually adapts a semantic segmentation model from light synthetic fog to dense real fog in multiple steps, using both synthetic and real foggy data. In addition, we present three other main stand-alone contributions: (1) a novel method to add synthetic fog to real, clear-weather scenes using semantic input; (2) a new fog density estimator; (3) the Foggy Zurich dataset comprising 3808 real foggy images, with pixel-level semantic annotations for 16 images with dense fog. Our experiments show that (1) our fog simulation slightly outperforms a state-of-the-art competing simulation with respect to the task of semantic foggy scene understanding (SFSU); (2) CMAda improves the performance of state-of-the-art models for SFSU significantly by leveraging unlabeled real foggy data. The datasets and code will be made publicly available." @default.
- W2887964057 created "2018-08-22" @default.
- W2887964057 creator A5001254143 @default.
- W2887964057 creator A5058481699 @default.
- W2887964057 creator A5065534301 @default.
- W2887964057 creator A5078838951 @default.
- W2887964057 date "2018-01-01" @default.
- W2887964057 modified "2023-10-17" @default.
- W2887964057 title "Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding" @default.
- W2887964057 cites W1536680647 @default.
- W2887964057 cites W1541162307 @default.
- W2887964057 cites W1552073401 @default.
- W2887964057 cites W1562810981 @default.
- W2887964057 cites W1913356549 @default.
- W2887964057 cites W1920864768 @default.
- W2887964057 cites W1967083472 @default.
- W2887964057 cites W1974292419 @default.
- W2887964057 cites W1979319585 @default.
- W2887964057 cites W1992345060 @default.
- W2887964057 cites W2006417020 @default.
- W2887964057 cites W2018726624 @default.
- W2887964057 cites W2028763589 @default.
- W2887964057 cites W2028990532 @default.
- W2887964057 cites W2031624349 @default.
- W2887964057 cites W2065002911 @default.
- W2887964057 cites W2065533005 @default.
- W2887964057 cites W2095543923 @default.
- W2887964057 cites W2097900287 @default.
- W2887964057 cites W2099015219 @default.
- W2887964057 cites W2114867966 @default.
- W2887964057 cites W2117539524 @default.
- W2887964057 cites W2118246710 @default.
- W2887964057 cites W2121880036 @default.
- W2887964057 cites W2125188192 @default.
- W2887964057 cites W2128254161 @default.
- W2887964057 cites W2129393719 @default.
- W2887964057 cites W2144779437 @default.
- W2887964057 cites W2150066425 @default.
- W2887964057 cites W2159132531 @default.
- W2887964057 cites W2169356686 @default.
- W2887964057 cites W2199472553 @default.
- W2887964057 cites W2293894573 @default.
- W2887964057 cites W2294370754 @default.
- W2887964057 cites W2296073425 @default.
- W2887964057 cites W2340897893 @default.
- W2887964057 cites W2431874326 @default.
- W2887964057 cites W2467473805 @default.
- W2887964057 cites W2508992006 @default.
- W2887964057 cites W2560023338 @default.
- W2887964057 cites W2563705555 @default.
- W2887964057 cites W2748021867 @default.
- W2887964057 cites W2781228439 @default.
- W2887964057 cites W2795889831 @default.
- W2887964057 cites W2887286974 @default.
- W2887964057 cites W2912104034 @default.
- W2887964057 cites W2964115968 @default.
- W2887964057 cites W4242198876 @default.
- W2887964057 cites W4244324388 @default.
- W2887964057 cites W753847829 @default.
- W2887964057 doi "https://doi.org/10.1007/978-3-030-01261-8_42" @default.
- W2887964057 hasPublicationYear "2018" @default.
- W2887964057 type Work @default.
- W2887964057 sameAs 2887964057 @default.
- W2887964057 citedByCount "111" @default.
- W2887964057 countsByYear W28879640572018 @default.
- W2887964057 countsByYear W28879640572019 @default.
- W2887964057 countsByYear W28879640572020 @default.
- W2887964057 countsByYear W28879640572021 @default.
- W2887964057 countsByYear W28879640572022 @default.
- W2887964057 countsByYear W28879640572023 @default.
- W2887964057 crossrefType "book-chapter" @default.
- W2887964057 hasAuthorship W2887964057A5001254143 @default.
- W2887964057 hasAuthorship W2887964057A5058481699 @default.
- W2887964057 hasAuthorship W2887964057A5065534301 @default.
- W2887964057 hasAuthorship W2887964057A5078838951 @default.
- W2887964057 hasBestOaLocation W28879640572 @default.
- W2887964057 hasConcept C120665830 @default.
- W2887964057 hasConcept C121332964 @default.
- W2887964057 hasConcept C139807058 @default.
- W2887964057 hasConcept C153294291 @default.
- W2887964057 hasConcept C154945302 @default.
- W2887964057 hasConcept C160633673 @default.
- W2887964057 hasConcept C160920958 @default.
- W2887964057 hasConcept C162324750 @default.
- W2887964057 hasConcept C187736073 @default.
- W2887964057 hasConcept C2780451532 @default.
- W2887964057 hasConcept C2992147540 @default.
- W2887964057 hasConcept C31972630 @default.
- W2887964057 hasConcept C41008148 @default.
- W2887964057 hasConcept C89600930 @default.
- W2887964057 hasConceptScore W2887964057C120665830 @default.
- W2887964057 hasConceptScore W2887964057C121332964 @default.
- W2887964057 hasConceptScore W2887964057C139807058 @default.
- W2887964057 hasConceptScore W2887964057C153294291 @default.
- W2887964057 hasConceptScore W2887964057C154945302 @default.
- W2887964057 hasConceptScore W2887964057C160633673 @default.
- W2887964057 hasConceptScore W2887964057C160920958 @default.
- W2887964057 hasConceptScore W2887964057C162324750 @default.