Matches in SemOpenAlex for { <https://semopenalex.org/work/W2887976008> ?p ?o ?g. }
- W2887976008 endingPage "490" @default.
- W2887976008 startingPage "481" @default.
- W2887976008 abstract "Non-linear dimensionality reduction (NDR) methods such as LLE and t-SNE are popular with visualization researchers and experienced data analysts, but present serious problems of interpretation. In this paper, we present DimReader, a technique that recovers readable axes from such techniques. DimReader is based on analyzing infinitesimal perturbations of the dataset with respect to variables of interest. The perturbations define exactly how we want to change each point in the original dataset and we measure the effect that these changes have on the projection. The recovered axes are in direct analogy with the axis lines (grid lines) of traditional scatterplots. We also present methods for discovering perturbations on the input data that change the projection the most. The calculation of the perturbations is efficient and easily integrated into programs written in modern programming languages. We present results of DimReader on a variety of NDR methods and datasets both synthetic and real-life, and show how it can be used to compare different NDR methods. Finally, we discuss limitations of our proposal and situations where further research is needed." @default.
- W2887976008 created "2018-08-22" @default.
- W2887976008 creator A5035997603 @default.
- W2887976008 creator A5037711609 @default.
- W2887976008 creator A5039063170 @default.
- W2887976008 date "2019-01-01" @default.
- W2887976008 modified "2023-10-10" @default.
- W2887976008 title "DimReader: Axis lines that explain non-linear projections" @default.
- W2887976008 cites W1571401318 @default.
- W2887976008 cites W1893905004 @default.
- W2887976008 cites W1945230793 @default.
- W2887976008 cites W1964971935 @default.
- W2887976008 cites W1987269142 @default.
- W2887976008 cites W2001141328 @default.
- W2887976008 cites W2015755066 @default.
- W2887976008 cites W2025394193 @default.
- W2887976008 cites W2027714334 @default.
- W2887976008 cites W2027855569 @default.
- W2887976008 cites W2037133710 @default.
- W2887976008 cites W2050674259 @default.
- W2887976008 cites W2053186076 @default.
- W2887976008 cites W2070626686 @default.
- W2887976008 cites W2073800769 @default.
- W2887976008 cites W2077572712 @default.
- W2887976008 cites W2088323702 @default.
- W2887976008 cites W2094840417 @default.
- W2887976008 cites W2102323492 @default.
- W2887976008 cites W2128021408 @default.
- W2887976008 cites W2137224043 @default.
- W2887976008 cites W2146292423 @default.
- W2887976008 cites W2151933245 @default.
- W2887976008 cites W2154699792 @default.
- W2887976008 cites W2156838815 @default.
- W2887976008 cites W2161219366 @default.
- W2887976008 cites W2162825485 @default.
- W2887976008 cites W2163825541 @default.
- W2887976008 cites W2220259229 @default.
- W2887976008 cites W2322815201 @default.
- W2887976008 cites W2478429860 @default.
- W2887976008 cites W2517066960 @default.
- W2887976008 cites W2542768043 @default.
- W2887976008 cites W3149684929 @default.
- W2887976008 cites W4234731922 @default.
- W2887976008 doi "https://doi.org/10.1109/tvcg.2018.2865194" @default.
- W2887976008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30136997" @default.
- W2887976008 hasPublicationYear "2019" @default.
- W2887976008 type Work @default.
- W2887976008 sameAs 2887976008 @default.
- W2887976008 citedByCount "30" @default.
- W2887976008 countsByYear W28879760082019 @default.
- W2887976008 countsByYear W28879760082020 @default.
- W2887976008 countsByYear W28879760082021 @default.
- W2887976008 countsByYear W28879760082022 @default.
- W2887976008 countsByYear W28879760082023 @default.
- W2887976008 crossrefType "journal-article" @default.
- W2887976008 hasAuthorship W2887976008A5035997603 @default.
- W2887976008 hasAuthorship W2887976008A5037711609 @default.
- W2887976008 hasAuthorship W2887976008A5039063170 @default.
- W2887976008 hasBestOaLocation W28879760082 @default.
- W2887976008 hasConcept C111030470 @default.
- W2887976008 hasConcept C11413529 @default.
- W2887976008 hasConcept C124101348 @default.
- W2887976008 hasConcept C134306372 @default.
- W2887976008 hasConcept C136197465 @default.
- W2887976008 hasConcept C154945302 @default.
- W2887976008 hasConcept C172367668 @default.
- W2887976008 hasConcept C187691185 @default.
- W2887976008 hasConcept C199360897 @default.
- W2887976008 hasConcept C202444582 @default.
- W2887976008 hasConcept C2524010 @default.
- W2887976008 hasConcept C2780009758 @default.
- W2887976008 hasConcept C28719098 @default.
- W2887976008 hasConcept C33676613 @default.
- W2887976008 hasConcept C33923547 @default.
- W2887976008 hasConcept C36464697 @default.
- W2887976008 hasConcept C41008148 @default.
- W2887976008 hasConcept C41045048 @default.
- W2887976008 hasConcept C527412718 @default.
- W2887976008 hasConcept C57493831 @default.
- W2887976008 hasConcept C70518039 @default.
- W2887976008 hasConcept C80444323 @default.
- W2887976008 hasConcept C91229774 @default.
- W2887976008 hasConceptScore W2887976008C111030470 @default.
- W2887976008 hasConceptScore W2887976008C11413529 @default.
- W2887976008 hasConceptScore W2887976008C124101348 @default.
- W2887976008 hasConceptScore W2887976008C134306372 @default.
- W2887976008 hasConceptScore W2887976008C136197465 @default.
- W2887976008 hasConceptScore W2887976008C154945302 @default.
- W2887976008 hasConceptScore W2887976008C172367668 @default.
- W2887976008 hasConceptScore W2887976008C187691185 @default.
- W2887976008 hasConceptScore W2887976008C199360897 @default.
- W2887976008 hasConceptScore W2887976008C202444582 @default.
- W2887976008 hasConceptScore W2887976008C2524010 @default.
- W2887976008 hasConceptScore W2887976008C2780009758 @default.
- W2887976008 hasConceptScore W2887976008C28719098 @default.
- W2887976008 hasConceptScore W2887976008C33676613 @default.
- W2887976008 hasConceptScore W2887976008C33923547 @default.
- W2887976008 hasConceptScore W2887976008C36464697 @default.