Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888077844> ?p ?o ?g. }
- W2888077844 endingPage "774" @default.
- W2888077844 startingPage "765" @default.
- W2888077844 abstract "Multivariate trophic indices provide an efficient way to assess and classify the eutrophication level and ecological status of a given water body, but their computation requires the availability of experimental information on many parameters, including biological data, that might not always be available. Here we show that machine learning techniques – once trained against a full data set – can be used to infer plankton biomass information from chemical and physical parameter only, so that trophic index can then be computed without using additional biological data. More specifically, we reconstruct plankton information from chemical and physical data, and this information together with chemical data was used to compute the TRIX, which was eventually used to assess the eutrophication status of the water body. The RF was also used to evaluate the prevailing mechanism (bottom-up versus top-down) controlling plankton dynamic. The case study was a Mediterranean lagoon, the Ghar El Melh Lagoon, which has been used as a natural laboratory to test the effectiveness of the proposed approach. Based on the resulting TRIX values (4.2 in April – 5.7 in December) the Ghar El Melh Lagoon can be classified an eutrophic ecosystem. This modeling process suggests that phytoplankton growth in Ghar El Melh Lagoon is mainly bottom-up control by nutrients availability, whereas the top-down control exerted by the zooplankton is relatively weak. Results highlight that in bottom up controlled lagoon machine learning technique can efficiently be used to compute ecological indicators even with low availability of biological data." @default.
- W2888077844 created "2018-08-31" @default.
- W2888077844 creator A5027089369 @default.
- W2888077844 creator A5033270034 @default.
- W2888077844 creator A5033819501 @default.
- W2888077844 creator A5046359845 @default.
- W2888077844 creator A5055597517 @default.
- W2888077844 creator A5058333524 @default.
- W2888077844 creator A5059796910 @default.
- W2888077844 creator A5071666946 @default.
- W2888077844 creator A5086812382 @default.
- W2888077844 creator A5091550174 @default.
- W2888077844 date "2018-12-01" @default.
- W2888077844 modified "2023-10-16" @default.
- W2888077844 title "Machine learning predictions of trophic status indicators and plankton dynamic in coastal lagoons" @default.
- W2888077844 cites W1145321339 @default.
- W2888077844 cites W1799044786 @default.
- W2888077844 cites W1963582318 @default.
- W2888077844 cites W1969938588 @default.
- W2888077844 cites W1974891395 @default.
- W2888077844 cites W1975428514 @default.
- W2888077844 cites W1978586657 @default.
- W2888077844 cites W1980305474 @default.
- W2888077844 cites W1982869245 @default.
- W2888077844 cites W1992295424 @default.
- W2888077844 cites W1992816477 @default.
- W2888077844 cites W1997429768 @default.
- W2888077844 cites W1998255232 @default.
- W2888077844 cites W1998492888 @default.
- W2888077844 cites W1998834685 @default.
- W2888077844 cites W1999226115 @default.
- W2888077844 cites W1999576392 @default.
- W2888077844 cites W2001371737 @default.
- W2888077844 cites W2002613414 @default.
- W2888077844 cites W2011134043 @default.
- W2888077844 cites W2013954313 @default.
- W2888077844 cites W2024375215 @default.
- W2888077844 cites W2033275656 @default.
- W2888077844 cites W2036535768 @default.
- W2888077844 cites W2044087172 @default.
- W2888077844 cites W2059611862 @default.
- W2888077844 cites W2060313313 @default.
- W2888077844 cites W2065155794 @default.
- W2888077844 cites W2069168232 @default.
- W2888077844 cites W2076222070 @default.
- W2888077844 cites W2077592630 @default.
- W2888077844 cites W2078961135 @default.
- W2888077844 cites W2087164038 @default.
- W2888077844 cites W2090151691 @default.
- W2888077844 cites W2090184014 @default.
- W2888077844 cites W2095004275 @default.
- W2888077844 cites W2099290206 @default.
- W2888077844 cites W2099531697 @default.
- W2888077844 cites W2110878112 @default.
- W2888077844 cites W2111563160 @default.
- W2888077844 cites W2112812739 @default.
- W2888077844 cites W2139086914 @default.
- W2888077844 cites W2143481518 @default.
- W2888077844 cites W2153779825 @default.
- W2888077844 cites W2155389566 @default.
- W2888077844 cites W2156899230 @default.
- W2888077844 cites W2171820126 @default.
- W2888077844 cites W2171932711 @default.
- W2888077844 cites W2183075240 @default.
- W2888077844 cites W2189324258 @default.
- W2888077844 cites W2231363150 @default.
- W2888077844 cites W2442590123 @default.
- W2888077844 cites W2477718213 @default.
- W2888077844 cites W2505770004 @default.
- W2888077844 cites W2514105667 @default.
- W2888077844 cites W2531418612 @default.
- W2888077844 cites W2556482430 @default.
- W2888077844 cites W2571448124 @default.
- W2888077844 cites W2594600250 @default.
- W2888077844 cites W2606298092 @default.
- W2888077844 cites W2725588006 @default.
- W2888077844 cites W2739900084 @default.
- W2888077844 cites W2792635232 @default.
- W2888077844 cites W2808519899 @default.
- W2888077844 cites W2911964244 @default.
- W2888077844 cites W629169503 @default.
- W2888077844 cites W642511935 @default.
- W2888077844 cites W1982052416 @default.
- W2888077844 doi "https://doi.org/10.1016/j.ecolind.2018.08.041" @default.
- W2888077844 hasPublicationYear "2018" @default.
- W2888077844 type Work @default.
- W2888077844 sameAs 2888077844 @default.
- W2888077844 citedByCount "21" @default.
- W2888077844 countsByYear W28880778442019 @default.
- W2888077844 countsByYear W28880778442020 @default.
- W2888077844 countsByYear W28880778442021 @default.
- W2888077844 countsByYear W28880778442022 @default.
- W2888077844 countsByYear W28880778442023 @default.
- W2888077844 crossrefType "journal-article" @default.
- W2888077844 hasAuthorship W2888077844A5027089369 @default.
- W2888077844 hasAuthorship W2888077844A5033270034 @default.
- W2888077844 hasAuthorship W2888077844A5033819501 @default.
- W2888077844 hasAuthorship W2888077844A5046359845 @default.