Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888088750> ?p ?o ?g. }
- W2888088750 endingPage "424" @default.
- W2888088750 startingPage "424" @default.
- W2888088750 abstract "All tissues of organisms will become old as time goes on. In recent years, epigenetic investigations have found that there is a close correlation between DNA methylation and aging. With the development of DNA methylation research, a quantitative statistical relationship between DNA methylation and different ages was established based on the change rule of methylation with age, it is then possible to predict the age of individuals. All the data in this work were retrieved from the Illumina HumanMethylation BeadChip platform (27K or 450K). We analyzed 16 sets of healthy samples and 9 sets of diseased samples. The healthy samples included a total of 1899 publicly available blood samples (0⁻103 years old) and the diseased samples included 2395 blood samples. Six age-related CpG sites were selected through calculating Pearson correlation coefficients between age and DNA methylation values. We built a gradient boosting regressor model for these age-related CpG sites. 70% of the data was randomly selected as training data and the other 30% as independent data in each dataset for 25 runs in total. In the training dataset, the healthy samples showed that the correlation between predicted age and DNA methylation was 0.97, and the mean absolute deviation (MAD) was 2.72 years. In the independent dataset, the MAD was 4.06 years. The proposed model was further tested using the diseased samples. The MAD was 5.44 years for the training dataset and 7.08 years for the independent dataset. Furthermore, our model worked well when it was applied to saliva samples. These results illustrated that the age prediction based on six DNA methylation markers is very effective using the gradient boosting regressor." @default.
- W2888088750 created "2018-08-31" @default.
- W2888088750 creator A5002586536 @default.
- W2888088750 creator A5026821474 @default.
- W2888088750 creator A5066476120 @default.
- W2888088750 date "2018-08-21" @default.
- W2888088750 modified "2023-10-05" @default.
- W2888088750 title "Human Age Prediction Based on DNA Methylation Using a Gradient Boosting Regressor" @default.
- W2888088750 cites W1530934778 @default.
- W2888088750 cites W1546691149 @default.
- W2888088750 cites W1597628009 @default.
- W2888088750 cites W1606078320 @default.
- W2888088750 cites W1639076783 @default.
- W2888088750 cites W1692222554 @default.
- W2888088750 cites W1826161154 @default.
- W2888088750 cites W1972905138 @default.
- W2888088750 cites W1974047233 @default.
- W2888088750 cites W1979037093 @default.
- W2888088750 cites W1983673827 @default.
- W2888088750 cites W1986348806 @default.
- W2888088750 cites W1986635328 @default.
- W2888088750 cites W1988474688 @default.
- W2888088750 cites W1990124517 @default.
- W2888088750 cites W1998518971 @default.
- W2888088750 cites W2005458378 @default.
- W2888088750 cites W2006187748 @default.
- W2888088750 cites W2010073727 @default.
- W2888088750 cites W2014110447 @default.
- W2888088750 cites W2014945558 @default.
- W2888088750 cites W2018710900 @default.
- W2888088750 cites W2058600876 @default.
- W2888088750 cites W2061971307 @default.
- W2888088750 cites W2064862065 @default.
- W2888088750 cites W2067319631 @default.
- W2888088750 cites W2067819308 @default.
- W2888088750 cites W2068286936 @default.
- W2888088750 cites W2069049877 @default.
- W2888088750 cites W2076154138 @default.
- W2888088750 cites W2077359776 @default.
- W2888088750 cites W2080644309 @default.
- W2888088750 cites W2090054883 @default.
- W2888088750 cites W2092476887 @default.
- W2888088750 cites W2093934162 @default.
- W2888088750 cites W2104966044 @default.
- W2888088750 cites W2111775559 @default.
- W2888088750 cites W2121091193 @default.
- W2888088750 cites W2121273824 @default.
- W2888088750 cites W2125334940 @default.
- W2888088750 cites W2130318234 @default.
- W2888088750 cites W2131442620 @default.
- W2888088750 cites W2136691282 @default.
- W2888088750 cites W2136970997 @default.
- W2888088750 cites W2138848739 @default.
- W2888088750 cites W2142053177 @default.
- W2888088750 cites W2146794662 @default.
- W2888088750 cites W2152656267 @default.
- W2888088750 cites W2155819136 @default.
- W2888088750 cites W2161080415 @default.
- W2888088750 cites W2168880641 @default.
- W2888088750 cites W2181388765 @default.
- W2888088750 cites W2298284297 @default.
- W2888088750 cites W2349408014 @default.
- W2888088750 cites W2406249070 @default.
- W2888088750 cites W2592216350 @default.
- W2888088750 cites W2739955173 @default.
- W2888088750 cites W2754926974 @default.
- W2888088750 cites W49968103 @default.
- W2888088750 doi "https://doi.org/10.3390/genes9090424" @default.
- W2888088750 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6162650" @default.
- W2888088750 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30134623" @default.
- W2888088750 hasPublicationYear "2018" @default.
- W2888088750 type Work @default.
- W2888088750 sameAs 2888088750 @default.
- W2888088750 citedByCount "41" @default.
- W2888088750 countsByYear W28880887502019 @default.
- W2888088750 countsByYear W28880887502020 @default.
- W2888088750 countsByYear W28880887502021 @default.
- W2888088750 countsByYear W28880887502022 @default.
- W2888088750 countsByYear W28880887502023 @default.
- W2888088750 crossrefType "journal-article" @default.
- W2888088750 hasAuthorship W2888088750A5002586536 @default.
- W2888088750 hasAuthorship W2888088750A5026821474 @default.
- W2888088750 hasAuthorship W2888088750A5066476120 @default.
- W2888088750 hasBestOaLocation W28880887501 @default.
- W2888088750 hasConcept C104317684 @default.
- W2888088750 hasConcept C117220453 @default.
- W2888088750 hasConcept C140173407 @default.
- W2888088750 hasConcept C150194340 @default.
- W2888088750 hasConcept C190727270 @default.
- W2888088750 hasConcept C2524010 @default.
- W2888088750 hasConcept C33288867 @default.
- W2888088750 hasConcept C33923547 @default.
- W2888088750 hasConcept C41091548 @default.
- W2888088750 hasConcept C54355233 @default.
- W2888088750 hasConcept C552990157 @default.
- W2888088750 hasConcept C70721500 @default.
- W2888088750 hasConcept C86803240 @default.
- W2888088750 hasConceptScore W2888088750C104317684 @default.