Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888112574> ?p ?o ?g. }
- W2888112574 endingPage "195003" @default.
- W2888112574 startingPage "195003" @default.
- W2888112574 abstract "Dual- or multi-energy CT, also known as spectral CT, obtains x-ray attenuation measurements at two or more energy spectra, allowing quantification of materials with different compositions. This process is known as material decomposition, which is the basis for a number of spectral CT applications. The conventional image-domain basis material decomposition is based on a least-squares fitting between the underlying material-specific images and the measured source spectral CT images (i.e. energy-bin or energy-threshold CT images), and a non-iterative solution based on matrix inversion can be derived for this process. However, due to its ill-conditioned nature, the material decomposition process is intrinsically susceptible to noise amplification. Hence, material-specific images can be contaminated by the presence of strong noise, which compromises the conspicuity of small objects, and hinders the delineation of anatomical regions of interest and associated pathology. In this work, we describe an image domain material decomposition framework with prior knowledge aware iterative denoising (MD-PKAID). The proposed framework exploits the structural redundancy between the individual material-specific images and the source spectral CT images to retain structural details in denoised material-specific images. It directly treats material decomposition as a regularized optimization problem with spectral CT images measured with different energy spectra as inputs. Phantom, in vivo animal and human data were acquired on a research whole-body photon-counting-detector-based CT system and a dual-source, dual-energy CT system to test the proposed method. The phantom results show that the proposed MD-PKAID can reduce the root-mean-square-error of basis material quantification by 75% compared to the standard material decomposition based on matrix inversion, while preserving structural details and image resolution in the material-specific images. The initial in vivo results demonstrate that the proposed method can improve delineation of small vasculature features in iodine-specific images while reducing image noise." @default.
- W2888112574 created "2018-08-31" @default.
- W2888112574 creator A5030457611 @default.
- W2888112574 creator A5064588240 @default.
- W2888112574 creator A5067668310 @default.
- W2888112574 date "2018-09-21" @default.
- W2888112574 modified "2023-10-15" @default.
- W2888112574 title "Material decomposition with prior knowledge aware iterative denoising (MD-PKAID)" @default.
- W2888112574 cites W1748953118 @default.
- W2888112574 cites W1926920987 @default.
- W2888112574 cites W1972037630 @default.
- W2888112574 cites W1975658718 @default.
- W2888112574 cites W1987719059 @default.
- W2888112574 cites W1988247469 @default.
- W2888112574 cites W1988260083 @default.
- W2888112574 cites W1996180067 @default.
- W2888112574 cites W2001433059 @default.
- W2888112574 cites W2005987054 @default.
- W2888112574 cites W2007516869 @default.
- W2888112574 cites W2009110061 @default.
- W2888112574 cites W2010963605 @default.
- W2888112574 cites W2018880698 @default.
- W2888112574 cites W2021354920 @default.
- W2888112574 cites W2032904957 @default.
- W2888112574 cites W2042195023 @default.
- W2888112574 cites W2054165030 @default.
- W2888112574 cites W2055138517 @default.
- W2888112574 cites W2069599320 @default.
- W2888112574 cites W2070369771 @default.
- W2888112574 cites W2082264159 @default.
- W2888112574 cites W2084789529 @default.
- W2888112574 cites W2086734311 @default.
- W2888112574 cites W2087707438 @default.
- W2888112574 cites W2088596249 @default.
- W2888112574 cites W2095024285 @default.
- W2888112574 cites W2099728952 @default.
- W2888112574 cites W2120096152 @default.
- W2888112574 cites W2123169298 @default.
- W2888112574 cites W2129041782 @default.
- W2888112574 cites W2138689750 @default.
- W2888112574 cites W2139655972 @default.
- W2888112574 cites W2143684211 @default.
- W2888112574 cites W2149400409 @default.
- W2888112574 cites W2151246344 @default.
- W2888112574 cites W2162048153 @default.
- W2888112574 cites W2237473774 @default.
- W2888112574 cites W2293587253 @default.
- W2888112574 cites W2300533347 @default.
- W2888112574 cites W2330072869 @default.
- W2888112574 cites W2341786678 @default.
- W2888112574 cites W2347030747 @default.
- W2888112574 cites W2471048935 @default.
- W2888112574 cites W2516922013 @default.
- W2888112574 cites W2520302833 @default.
- W2888112574 cites W2556227111 @default.
- W2888112574 cites W2569379566 @default.
- W2888112574 cites W2592398622 @default.
- W2888112574 cites W2607545988 @default.
- W2888112574 cites W2609033513 @default.
- W2888112574 cites W2610769070 @default.
- W2888112574 cites W2760169020 @default.
- W2888112574 cites W2770033442 @default.
- W2888112574 doi "https://doi.org/10.1088/1361-6560/aadc90" @default.
- W2888112574 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30136655" @default.
- W2888112574 hasPublicationYear "2018" @default.
- W2888112574 type Work @default.
- W2888112574 sameAs 2888112574 @default.
- W2888112574 citedByCount "38" @default.
- W2888112574 countsByYear W28881125742019 @default.
- W2888112574 countsByYear W28881125742020 @default.
- W2888112574 countsByYear W28881125742021 @default.
- W2888112574 countsByYear W28881125742022 @default.
- W2888112574 countsByYear W28881125742023 @default.
- W2888112574 crossrefType "journal-article" @default.
- W2888112574 hasAuthorship W2888112574A5030457611 @default.
- W2888112574 hasAuthorship W2888112574A5064588240 @default.
- W2888112574 hasAuthorship W2888112574A5067668310 @default.
- W2888112574 hasConcept C104293457 @default.
- W2888112574 hasConcept C105795698 @default.
- W2888112574 hasConcept C11413529 @default.
- W2888112574 hasConcept C120665830 @default.
- W2888112574 hasConcept C121332964 @default.
- W2888112574 hasConcept C141379421 @default.
- W2888112574 hasConcept C154945302 @default.
- W2888112574 hasConcept C158693339 @default.
- W2888112574 hasConcept C163294075 @default.
- W2888112574 hasConcept C186370098 @default.
- W2888112574 hasConcept C31972630 @default.
- W2888112574 hasConcept C33923547 @default.
- W2888112574 hasConcept C41008148 @default.
- W2888112574 hasConcept C42355184 @default.
- W2888112574 hasConcept C62520636 @default.
- W2888112574 hasConceptScore W2888112574C104293457 @default.
- W2888112574 hasConceptScore W2888112574C105795698 @default.
- W2888112574 hasConceptScore W2888112574C11413529 @default.
- W2888112574 hasConceptScore W2888112574C120665830 @default.
- W2888112574 hasConceptScore W2888112574C121332964 @default.
- W2888112574 hasConceptScore W2888112574C141379421 @default.