Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888167412> ?p ?o ?g. }
- W2888167412 endingPage "192" @default.
- W2888167412 startingPage "183" @default.
- W2888167412 abstract "Summary In this article, we develop a Bayesian hierarchical mixture regression model for studying the association between a multivariate response, measured as counts on a set of features, and a set of covariates. We have available RNA‐Seq and DNA methylation data measured on breast cancer patients at different stages of the disease. We account for the heterogeneity and over‐dispersion of count data (here, RNA‐Seq data) by considering a mixture of negative binomial distributions and incorporate the covariates (here, methylation data) into the model via a linear modeling construction on the mean components. Our modeling construction includes several innovative characteristics. First, it employs selection techniques that allow the identification of a small subset of features that best discriminate the samples while simultaneously selecting a set of covariates associated to each feature. Second, it incorporates known dependencies into the feature selection process via the use of Markov random field (MRF) priors. On simulated data, we show how incorporating existing information via the prior model can improve the accuracy of feature selection. In the analysis of RNA‐Seq and DNA methylation data on breast cancer, we incorporate knowledge on relationships among genes via a gene‐gene network, which we extract from the KEGG database. Our data analysis identifies genes which are discriminatory of cancer stages and simultaneously selects significant associations between those genes and DNA methylation sites. A biological interpretation of our findings reveals several biomarkers that can help understanding the effect of DNA methylation on gene expression transcription across cancer stages." @default.
- W2888167412 created "2018-08-31" @default.
- W2888167412 creator A5021757607 @default.
- W2888167412 creator A5030348494 @default.
- W2888167412 creator A5065405793 @default.
- W2888167412 creator A5077081775 @default.
- W2888167412 date "2018-09-19" @default.
- W2888167412 modified "2023-10-18" @default.
- W2888167412 title "Bayesian negative binomial mixture regression models for the analysis of sequence count and methylation data" @default.
- W2888167412 cites W1196702536 @default.
- W2888167412 cites W1978703721 @default.
- W2888167412 cites W1981509058 @default.
- W2888167412 cites W2004078197 @default.
- W2888167412 cites W2021905453 @default.
- W2888167412 cites W2023155906 @default.
- W2888167412 cites W2027913822 @default.
- W2888167412 cites W2036183522 @default.
- W2888167412 cites W2055986128 @default.
- W2888167412 cites W2100625056 @default.
- W2888167412 cites W2110065044 @default.
- W2888167412 cites W2114104545 @default.
- W2888167412 cites W2122683221 @default.
- W2888167412 cites W2124482810 @default.
- W2888167412 cites W2130116522 @default.
- W2888167412 cites W2146512944 @default.
- W2888167412 cites W2148534890 @default.
- W2888167412 cites W2152239989 @default.
- W2888167412 cites W2156631105 @default.
- W2888167412 cites W2161148924 @default.
- W2888167412 cites W2165266865 @default.
- W2888167412 cites W2165685453 @default.
- W2888167412 cites W2170219300 @default.
- W2888167412 cites W2170264612 @default.
- W2888167412 cites W2179438025 @default.
- W2888167412 cites W2581499940 @default.
- W2888167412 cites W3099602059 @default.
- W2888167412 cites W3103302162 @default.
- W2888167412 cites W4211032970 @default.
- W2888167412 doi "https://doi.org/10.1111/biom.12962" @default.
- W2888167412 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30125947" @default.
- W2888167412 hasPublicationYear "2018" @default.
- W2888167412 type Work @default.
- W2888167412 sameAs 2888167412 @default.
- W2888167412 citedByCount "11" @default.
- W2888167412 countsByYear W28881674122019 @default.
- W2888167412 countsByYear W28881674122020 @default.
- W2888167412 countsByYear W28881674122021 @default.
- W2888167412 countsByYear W28881674122022 @default.
- W2888167412 countsByYear W28881674122023 @default.
- W2888167412 crossrefType "journal-article" @default.
- W2888167412 hasAuthorship W2888167412A5021757607 @default.
- W2888167412 hasAuthorship W2888167412A5030348494 @default.
- W2888167412 hasAuthorship W2888167412A5065405793 @default.
- W2888167412 hasAuthorship W2888167412A5077081775 @default.
- W2888167412 hasBestOaLocation W28881674121 @default.
- W2888167412 hasConcept C100906024 @default.
- W2888167412 hasConcept C104317684 @default.
- W2888167412 hasConcept C105795698 @default.
- W2888167412 hasConcept C107673813 @default.
- W2888167412 hasConcept C119043178 @default.
- W2888167412 hasConcept C119857082 @default.
- W2888167412 hasConcept C124101348 @default.
- W2888167412 hasConcept C148483581 @default.
- W2888167412 hasConcept C150194340 @default.
- W2888167412 hasConcept C154945302 @default.
- W2888167412 hasConcept C177769412 @default.
- W2888167412 hasConcept C190727270 @default.
- W2888167412 hasConcept C199335787 @default.
- W2888167412 hasConcept C207201462 @default.
- W2888167412 hasConcept C33643355 @default.
- W2888167412 hasConcept C33923547 @default.
- W2888167412 hasConcept C41008148 @default.
- W2888167412 hasConcept C54355233 @default.
- W2888167412 hasConcept C70721500 @default.
- W2888167412 hasConcept C86803240 @default.
- W2888167412 hasConceptScore W2888167412C100906024 @default.
- W2888167412 hasConceptScore W2888167412C104317684 @default.
- W2888167412 hasConceptScore W2888167412C105795698 @default.
- W2888167412 hasConceptScore W2888167412C107673813 @default.
- W2888167412 hasConceptScore W2888167412C119043178 @default.
- W2888167412 hasConceptScore W2888167412C119857082 @default.
- W2888167412 hasConceptScore W2888167412C124101348 @default.
- W2888167412 hasConceptScore W2888167412C148483581 @default.
- W2888167412 hasConceptScore W2888167412C150194340 @default.
- W2888167412 hasConceptScore W2888167412C154945302 @default.
- W2888167412 hasConceptScore W2888167412C177769412 @default.
- W2888167412 hasConceptScore W2888167412C190727270 @default.
- W2888167412 hasConceptScore W2888167412C199335787 @default.
- W2888167412 hasConceptScore W2888167412C207201462 @default.
- W2888167412 hasConceptScore W2888167412C33643355 @default.
- W2888167412 hasConceptScore W2888167412C33923547 @default.
- W2888167412 hasConceptScore W2888167412C41008148 @default.
- W2888167412 hasConceptScore W2888167412C54355233 @default.
- W2888167412 hasConceptScore W2888167412C70721500 @default.
- W2888167412 hasConceptScore W2888167412C86803240 @default.
- W2888167412 hasIssue "1" @default.
- W2888167412 hasLocation W28881674121 @default.
- W2888167412 hasLocation W28881674122 @default.