Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888193973> ?p ?o ?g. }
- W2888193973 abstract "Recently, deep learning technologies have been utilized in many scientific domains successfully. Convolution neural networks are common used in image understanding problems. However, to train a convolution neural network model with huge amount of images is time-consuming task. Most of deep learning frameworks, such as Caffe, TensorFlow, Torch, Keras, MxNet, and so forth, support GPU to train model fast; especially executing these models on multiple GPUs. In this work, we present the comparison of computation performance of AlexNet among different GPU servers and hyperparameters. The results shows that GPU servers with high bandwidth rate, NVLINK, can achieve better performance than others." @default.
- W2888193973 created "2018-08-31" @default.
- W2888193973 creator A5003302169 @default.
- W2888193973 creator A5011281958 @default.
- W2888193973 creator A5040330532 @default.
- W2888193973 creator A5054287076 @default.
- W2888193973 creator A5083716563 @default.
- W2888193973 date "2018-06-01" @default.
- W2888193973 modified "2023-09-23" @default.
- W2888193973 title "Performance of Convolution Neural Network based on Multiple GPUs with Different Data Communication Models" @default.
- W2888193973 cites W1510052597 @default.
- W2888193973 cites W1572016165 @default.
- W2888193973 cites W1606347560 @default.
- W2888193973 cites W1686810756 @default.
- W2888193973 cites W2016323639 @default.
- W2888193973 cites W2097117768 @default.
- W2888193973 cites W2105549957 @default.
- W2888193973 cites W2143031615 @default.
- W2888193973 cites W2155893237 @default.
- W2888193973 cites W2163605009 @default.
- W2888193973 cites W2171278097 @default.
- W2888193973 cites W2186615578 @default.
- W2888193973 cites W2194775991 @default.
- W2888193973 cites W2266822037 @default.
- W2888193973 cites W2271840356 @default.
- W2888193973 cites W2405883473 @default.
- W2888193973 cites W2524428287 @default.
- W2888193973 cites W753012316 @default.
- W2888193973 doi "https://doi.org/10.1109/snpd.2018.8441056" @default.
- W2888193973 hasPublicationYear "2018" @default.
- W2888193973 type Work @default.
- W2888193973 sameAs 2888193973 @default.
- W2888193973 citedByCount "1" @default.
- W2888193973 countsByYear W28881939732020 @default.
- W2888193973 crossrefType "proceedings-article" @default.
- W2888193973 hasAuthorship W2888193973A5003302169 @default.
- W2888193973 hasAuthorship W2888193973A5011281958 @default.
- W2888193973 hasAuthorship W2888193973A5040330532 @default.
- W2888193973 hasAuthorship W2888193973A5054287076 @default.
- W2888193973 hasAuthorship W2888193973A5083716563 @default.
- W2888193973 hasConcept C108583219 @default.
- W2888193973 hasConcept C111919701 @default.
- W2888193973 hasConcept C113775141 @default.
- W2888193973 hasConcept C11413529 @default.
- W2888193973 hasConcept C115903868 @default.
- W2888193973 hasConcept C118524514 @default.
- W2888193973 hasConcept C119857082 @default.
- W2888193973 hasConcept C154945302 @default.
- W2888193973 hasConcept C162324750 @default.
- W2888193973 hasConcept C173608175 @default.
- W2888193973 hasConcept C187736073 @default.
- W2888193973 hasConcept C2776257435 @default.
- W2888193973 hasConcept C2780451532 @default.
- W2888193973 hasConcept C31258907 @default.
- W2888193973 hasConcept C41008148 @default.
- W2888193973 hasConcept C45347329 @default.
- W2888193973 hasConcept C45374587 @default.
- W2888193973 hasConcept C459310 @default.
- W2888193973 hasConcept C50644808 @default.
- W2888193973 hasConcept C67186912 @default.
- W2888193973 hasConcept C81363708 @default.
- W2888193973 hasConcept C8642999 @default.
- W2888193973 hasConcept C93996380 @default.
- W2888193973 hasConceptScore W2888193973C108583219 @default.
- W2888193973 hasConceptScore W2888193973C111919701 @default.
- W2888193973 hasConceptScore W2888193973C113775141 @default.
- W2888193973 hasConceptScore W2888193973C11413529 @default.
- W2888193973 hasConceptScore W2888193973C115903868 @default.
- W2888193973 hasConceptScore W2888193973C118524514 @default.
- W2888193973 hasConceptScore W2888193973C119857082 @default.
- W2888193973 hasConceptScore W2888193973C154945302 @default.
- W2888193973 hasConceptScore W2888193973C162324750 @default.
- W2888193973 hasConceptScore W2888193973C173608175 @default.
- W2888193973 hasConceptScore W2888193973C187736073 @default.
- W2888193973 hasConceptScore W2888193973C2776257435 @default.
- W2888193973 hasConceptScore W2888193973C2780451532 @default.
- W2888193973 hasConceptScore W2888193973C31258907 @default.
- W2888193973 hasConceptScore W2888193973C41008148 @default.
- W2888193973 hasConceptScore W2888193973C45347329 @default.
- W2888193973 hasConceptScore W2888193973C45374587 @default.
- W2888193973 hasConceptScore W2888193973C459310 @default.
- W2888193973 hasConceptScore W2888193973C50644808 @default.
- W2888193973 hasConceptScore W2888193973C67186912 @default.
- W2888193973 hasConceptScore W2888193973C81363708 @default.
- W2888193973 hasConceptScore W2888193973C8642999 @default.
- W2888193973 hasConceptScore W2888193973C93996380 @default.
- W2888193973 hasLocation W28881939731 @default.
- W2888193973 hasOpenAccess W2888193973 @default.
- W2888193973 hasPrimaryLocation W28881939731 @default.
- W2888193973 hasRelatedWork W2005992036 @default.
- W2888193973 hasRelatedWork W2039142704 @default.
- W2888193973 hasRelatedWork W2185817777 @default.
- W2888193973 hasRelatedWork W2308799417 @default.
- W2888193973 hasRelatedWork W2339765813 @default.
- W2888193973 hasRelatedWork W2469094744 @default.
- W2888193973 hasRelatedWork W2500509404 @default.
- W2888193973 hasRelatedWork W2796440709 @default.
- W2888193973 hasRelatedWork W2807169268 @default.
- W2888193973 hasRelatedWork W2897939267 @default.
- W2888193973 hasRelatedWork W2901764946 @default.